Реферат на тему: Из истории развития числа и счета


Министерство образования Российской Федерации
Пермский государственный гуманитарно-педагогический университет
Из истории развития числа и счета.


Выполнила:

Черемных Светлана
Анатольевна.

2013г
Введение.
Можно ли представить себе мир без чисел? На протяжении всей своей жизни мы сталкиваемся с числами и выполняем над ними арифметические действия. Нас это не удивляет. Мы воспринимаем это, как факт, как само собой разумеющееся и даже не задумываясь об их происхождении. Без знания прошлого нельзя понять настоящее. Поэтому целью данной работы является исследование истории возникновения чисел, связанной с необходимостью выражения всех чисел знаками.
Пересчитывая предметы, мы даем этому множеству количественную характеристику, даже не задумываясь о том, что и в далекие времена наши предки могли считать или, во всяком случае, могли определить количество предметов. Мы живем среди чисел. Само возникновение понятия числа - одно из гениальных проявлений человеческого разума. При помощи чисел производятся измерения, сравнения, вычисления, рисование, проектирование, даже можно делать умозаключения, выводы.  
Число - важнейшее понятие математики. Потребовалось несколько тысячелетий, чтобы это понятие приобрело форму, которая в настоящий момент признается удовлетворительной подавляющим большинством математиков.
Так, первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов.
Практически ежедневно мы сталкиваемся с необходимостью обработки числовой информации, что влечет за собой необходимость создания и усовершенствования  вычислительных устройств, благодаря которым обрабатывается огромное количество данных за наименьшее время. Так, для электронного хранения данных в памяти компьютера удобны две цифры, поскольку они требуют только двух состояний электронной схемы – «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0). Такое представление информации называется двоичным или цифровым кодированием. Способы цифрового кодирования текстов, звуков, изображений, а также трехмерных объектов были придуманы в 80-х годах прошлого века.
Цифры, знаки обозначения арифметических действий и другие математические символы вырабатывались людьми постепенно на протяжении веков. Большинство их образовалось из рисунков, чертежей, букв и сокращённых слов.
Согласно учению Пифагора, числа являются мистической сущностью вещей, математические абстракции таинственно руководят миром, устанавливая в нем определенный порядок. Пифагорейцы высказывали предположение о том, что все закономерности мира можно выразить с помощью чисел. Числа признавались не просто выражениями закономерного порядка, но и основой материального мира.
1. Развитие представления о понятии "число".
Еще в глубокой древности числа относились к  области тайного. Они зашифровывались символами,  и считались символами гармонии  мира. Существует много теорий о происхождении чисел.
Пифагорейцы  считали, что числа принадлежат к миру принципов, лежащих в основе мира вещей. Пифагор говорил: «Все вещи можно представить в виде чисел».
Аристотель называл число «началом и сущностью вещей, их взаимодействием и состоянием».
Древние египтяне были убеждены, что постижение священной науки чисел составляет одну из высших ступеней герметического действия, без него не может быть посвящения.
У китайцев нечетные числа – это Ян (небо – благоприятность), четные числа – инь (земля, изменчивость и неблагоприятность). Нечетность символизирует незавершенность, непрекращающийся процесс, постоянное продолжение, то есть все то, что не имеет конца, относятся к области вечного. Поэтому в орнаментах, в укрощениях архитектурных или скульптурных сооружений используется обычно нечетное число черт или элементов. Числа – символ порядка. Реки, деревья и горы представляют собой материализованные числа.
Люди научились считать еще в каменном веке. На первых этапах существования человеческого общества числа, открытые в процессе практической деятельности, служили для примитивного счета предметов, дней, шагов и т.п. В первобытном обществе человек нуждался лишь в нескольких первых числах. Но с развитием цивилизации ему потребовалось изобретать все большие и большие числа. Этот процесс продолжался на протяжении многих столетий и потребовал напряженного интеллектуального труда.
С зарождением обмена продуктами труда у людей появилась необходимость сравнивать число предметов одного вида с числом предмета другого вида. На этом этапе возникли понятия «больше», «меньше», «столько же» или «равно». Знания постепенно росли, и чем дальше, тем больше увеличилась потребность в умении считать и мерить.
Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства.
То, что первобытные люди сначала знали только «один», «два» и «много», подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми. Счет изначально был связан с вполне конкретным набором объектов. У некоторых племен Австралии и Полинезии до самого последнего времени было только два числительных: «один» и «два», а все числа больше двух, получали названия в виде сочетаний этих двух числительных: число 3 – это «два и один», 4 – «два и два», 5 – «два, два, один».
Жизнь заставляла племена учиться быстрее, поэтому у земледельческих народов математика из наборов отдельных простейших правил постепенно стала превращаться в науку.
Из истории возникновения счета и чисел.
Учиться считать люди начали в незапамятные времена, а учителем у них была сама жизнь.
Древние люди добывали себе пищу главным образом охотой. На крупного зверя — бизона или лося — приходилось охотиться всем племенем: в одиночку ведь с ним и не справишься. Чтобы добыча не ушла, ее надо было окружить, ну хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счёта никак не обойдешься! И вождь первобытного племени справлялся с этой задачей, Даже в те времена, когда человек не знал таких слов, как «пять» или «семь», он мог показать числа на пальцах рук.
Есть и сейчас на земле племена, которые при счёте не могут обойтись без помощи пальцев. Вместо числа пять они говорят «рука», десять — «две руки», а двадцать — «весь человек», — тут уж присчитываются числа на пальцах рук. В Африке есть племя, где и в наше время люди считают «один», «два», «три», а дальше «много».
Так люди начинали учиться считать, пользуясь тем, что дала им сама природа, — собственной пятернёй.
Предметы считать просто; один, два, три, четыре.… Измерить небольшое расстояние тоже несложно. Надо только иметь какую – нибудь мерку. Даже теперь мы нередко меряем расстояние по способу первобытных людей — считаем шаги.
Гораздо труднее найти мерку для времени. Тут ни пальцы, ни шаги не помогут: время можно измерять только временем. А мерка? Мерку надо было искать в природе.
Самыми древними «часами», которые к тому же никогда останавливались и не ломались, оказалось солнце. Утро, день, вечер, ночь. Не очень уж точные мерки, но поначалу первобытному человеку этого было достаточно. Потом люди научились определять время более точно: днём — по солнцу, а ночью — по звёздам.
Звёзды были для людей не только первыми часами, но и первым компасом.
А как разделить год? Весь год — это целых 365 дней, очень большая и не всегда удобная мера времени. На помощь пришла луна. Люди заметили, что от полнолуния до полнолуния проходит почти ровно тридцать суток. Так появилась ещё одна мера времени — месяц. Понятно, почему и по-русски и на многих других языках слово «месяц» означает и луну, и отрезок времени. Потом месяц стали делить ещё на четыре части. Из этих четвертушек месяца родились наши недели.
Для того чтобы считать дни нужны большие числа: десятки, сотни и даже тысячи. Тут, конечно, никаких пальцев для счёта хватить не могло! Да и считая предметы, их можно было перекладывать, пересчитывать несколько раз. А в счёте времени ошибаться нельзя. Прошедший день исчез, его не вернёшь, не присоединишь к другим.
Как же считали дни люди в те времена, когда они и писать не умели?
Додумались. Ведь можно было каждый день делать зарубку на палке и потом зарубки эти сосчитать. Так началась первая на земле запись прожитых дней. Только делали её не пером, а топором. Именно таким деревянным календарём пользовался на необитаемом острове Робинзон Крузо. Через каждые тридцать дней, то есть каждое новолуние, он делал на своём календаре зарубку подлиннее. Получалась отметка месяца. Из месяцев складывался год.
Некоторые народы — например индейцы в Северной Америке — вместо зарубок на палке завязывали узлы на шнуре или верёвке.
Так люди постепенно учились считать до сотен и тысяч и даже «записывать» эти числа с помощью палки или верёвки.
Постепенно росли знания людей, и чем дальше, тем больше увеличивалась потребность в умении считать и мерить. Скотоводам приходилось пересчитывать свои стада, а при этом счёт мог идти уже сотнями и тысячами. Земледельцу надо было знать, сколько земли засеять, чтобы прокормить себя до следующего урожая, А время посева? Ведь, если посеять не вовремя, урожая не получишь!
Счёт времени по лунным месяцам уже не годился. Нужен был более точный календарь. К тому же людям всё чаще приходилось сталкиваться с большими числами, запомнить которые трудно или даже невозможно. Нужно было придумать, как их записывать.
Около пяти тысяч лет назад люди додумались до того, что числа можно записывать не просто зарубками-единицами, а по разрядам: отдельно единицы, отдельно десятки, отдельно сотни. Это было очень важным открытием. Считать и записывать числа теперь стало гораздо легче.
В древнем Вавилоне считали не десятками, а шестидесятками. Число шестьдесят играло у них такую же роль, как у нас десять. Вавилоняне пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек — десять. Эти чёрточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали.
Вавилонская запись чисел была не очень удобной. Скучное занятие — рисовать много клинышков или уголков подряд, чтобы записать число двумя знаками. А если число было большое, то нередко происходила путаница, потому что специального значка для обозначения разряда 60 не было. И например, число 3600 изображалось, как и единица, вертикальным клином. Вот тут и разберись!
Очень интересная система счёта была у народа майя, который жил в Центральной Америке (там, где сейчас государство Мексика). Около двух тысяч лет назад индейцы майя были гораздо культурнее, чем народы, жившие в то время в Европе.
Майя считали двадцатками — у них была двадцатеричная система счёта. Числа от 1 до 20 обозначались точками и чёрточками. Если под числом был нарисован особый значок в виде глаза, это значило, что число надо увеличить в двадцать раз. Получались уже не единицы, а двадцатки, второй разряд. Если глаз был нарисован дважды, то число надо было дважды умножить на двадцать. Это был третий разряд — четырёхсотки. Выходит, что изображение глаза играло у майя ту же роль, что у нас цифра нуль. Только они рисовали глаз не рядом с числом, а под ним.
Китайцы, как и египтяне, пользовались десятичной системой счёта. Кроме цифр от 1 до 9 там есть ещё значки для 10, 100 и 1000. Если справа от цифры стоит значок «10», — значит, цифру надо умножить на 10, Получаются десятки, второй разряд.
Любопытны были различные методы обозначения чисел, придуманные египтянами и вавилонянами, греками и римлянами. Но у всех этих методов был один недостаток: по мере увеличения чисел нужны были всё новые и новые знаки. И когда один из величайших древнегреческих математиков Архимед научился называть громадные числа, никто из купцов, чиновников или военачальников не обратил на это внимания. А метод Архимеда был и впрямь замечателен. Он просто называл обычную единицу единицей чисел первых, а мириаду мириад, то есть 100000000, — единицей чисел вторых. Мириаду мириад чисел вторых он назвал единицей чисел третьих и так вел счёт до мириады мириад чисел мириадо-мириадных.
Чтобы представить себе, каким громадным было это число, достаточно сказать, что по-нашему оно записывается в виде единицы с 800000000 нулями. Но и здесь не остановился великий ученый. Мириаду мириад чисел мириадо-мириадных он назвал единицей чисел второго периода и, продолжая идти вперёд, дошёл до чисел мириадо-мириадного периода. Насколько велико это число, сказать почти невозможно. Если записать его обычным почерком на бумажной ленте, то эта лента окажется во много тысяч раз длиннее, чем расстояние от Земли до Солнца! Чтобы записать, сколько нулей в числе Архимеда, надо написать цифру 8 и поставить после неё 16 нулей.
Но хотя названия громадных чисел у Архимеда уже были, обозначать их он ещё толком не умел. Не хватало ему самой малости. Архимед, один из гениальнейших математиков, не додумался до…нуля!
Впервые нуль был придуман вавилонянами примерно две тысячи лет назад. Но они применяли его лишь для обозначения пропущенных разрядов. Писать нули в конце записи числа они не догадались. Да к тому же их система счисления была, как мы знаем, шестидесятичной, и поэтому их открытие оказалось незамеченным народами, считавшими в десятичной системе счисления. Может быть, к идее о нуле для десятичной системы счёта пришли счётчики на абаке, знавшие, что иногда не приходится не класть камешки в какую-нибудь канавку на доске? Может быть, это сделали александрийские купцы? Но обычно считают, что это замечательное достижение было сделано в Индии полторы тысячи лет тому назад.
Нуль был присоединён к девяти цифрам, и появилась возможность обозначать этими девятью цифрами любое число как бы велико оно не было.
Индийцы очень обрадовались этой возможности, и в их легендах есть повествования о битвах, в которых участвовало такое количество обезьян, что для его обозначения надо было написать после единицы ещё 23 нуля! Столько обезьян не поместится во всей Солнечной системе.
И самое главное, запись таких гигантских чисел стала довольно короткой. Ведь если бы живший тридцать тысячелетий тому назад древний человек имел представление о миллионе и захотел бы изобразить это число с помощью зарубок на волчьих костях ему пришлось бы истребить 20 тысяч волков. А для записи миллиарда не хватило бы волков во всех европейских лесах. Теперь же вся запись умещалась в одной строке!
Надо сказать, что хотя введение обозначения нуля оказалось чрезвычайно полезным для математики, первоначально некоторые «учёные» встретили это нововведение враждебно. «Зачем обозначать то, чего нет!» Но полезность нового открытия скоро стала ясна всем.
Как же в древности пользовались люди своим умением считать? Для чего им была нужна математика?
Народам-земледельцам, для того чтобы прожить и прокормиться, нужно было знать гораздо больше, чем кочевникам-скотоводам. Жизнь заставляла их учиться быстрее. Поэтому у земледельческих народов математика из набора отдельных простейших правил постепенно стала превращаться в науку.
Развитие представления о понятии "число".
Еще в глубокой древности числа относились к  области тайного. Они зашифровывались символами,  и считались символами гармонии  мира. Существует много теорий о происхождении чисел.
Пифагорейцы  считали, что числа принадлежат к миру принципов, лежащих в основе мира вещей. Пифагор говорил: «Все вещи можно представить в виде чисел».
Аристотель называл число «началом и сущностью вещей, их взаимодействием и состоянием».
Древние египтяне были убеждены, что постижение священной науки чисел составляет одну из высших ступеней герметического действия, без него не может быть посвящения.
У китайцев нечетные числа – это Ян (небо – благоприятность), четные числа – инь (земля, изменчивость и неблагоприятность). Нечетность символизирует незавершенность, непрекращающийся процесс, постоянное продолжение, то есть все то, что не имеет конца, относятся к области вечного. Поэтому в орнаментах, в укрощениях архитектурных или скульптурных сооружений используется обычно нечетное число черт или элементов. Числа – символ порядка. Реки, деревья и горы представляют собой материализованные числа.
Люди научились считать еще в каменном веке. На первых этапах существования человеческого общества числа, открытые в процессе практической деятельности, служили для примитивного счета предметов, дней, шагов и т.п. В первобытном обществе человек нуждался лишь в нескольких первых числах. Но с развитием цивилизации ему потребовалось изобретать все большие и большие числа. Этот процесс продолжался на протяжении многих столетий и потребовал напряженного интеллектуального труда.
С зарождением обмена продуктами труда у людей появилась необходимость сравнивать число предметов одного вида с числом предмета другого вида. На этом этапе возникли понятия «больше», «меньше», «столько же» или «равно». Знания постепенно росли, и чем дальше, тем больше увеличилась потребность в умении считать и мерить.
Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства.
То, что первобытные люди сначала знали только «один», «два» и «много», подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми. Счет изначально был связан с вполне конкретным набором объектов. У некоторых племен Австралии и Полинезии до самого последнего времени было только два числительных: «один» и «два», а все числа больше двух, получали названия в виде сочетаний этих двух числительных: число 3 – это «два и один», 4 – «два и два», 5 – «два, два, один».
Жизнь заставляла племена учиться быстрее, поэтому у земледельческих народов математика из наборов отдельных простейших правил постепенно стала превращаться в науку.
Число, как основное понятие математики.
Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами
Существует большое количество определений понятию «число». Первое научное определение числа дал Эвклид в своих «Началах», которое он, очевидно, унаследовал от своего соотечественника Эвдокса Книдского (около 408 – около 355 гг. до н. э.): «Единица есть то, в соответствии с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц». Так определял понятие числа и русский математик Магницкий в своей «Арифметике» (1703 г.).
Еще раньше Эвклида Аристотель дал такое определение: «Число есть множество, которое измеряется с помощью единиц».
Со слов греческого философа Ямвлиха, еще Фалес Милетский – родоначальник греческой стихийно-материалистической философии – учил, что «число есть система единиц». Это определение было известно и Пифагору.
Исследование множеств чисел с применением кругов Эйлера
Натуральные числа
Считается, что термин «натуральное число» впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 – 524 гг.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел.
Понятием «натуральное число» в современном его понимании последовательно пользовался выдающийся французский математик, философ-просветитель Даламбер (1717-1783 гг.).
Итак, изучение математики начиналось с натуральных чисел, недаром они и называются натуральными, то есть «природными», естественными, обыкновенными. Это числа 1, 2, 3, 4, …
С появлением натурального ряда был сделан первый шаг к созданию математики. Сейчас все понимают, что натуральный ряд чисел бесконечен. В древности люди этого не знали. Сначала они умели считать до трех, потом до десяти, до сорока, до ста, а дальше была «тьма», «легион» «леодр» «ворон», «колода», после чего добавляли, что большего числа не существует.
Натуральный ряд был очень коротким. Расширить его удалось великому механику и математику древности Архимеду (III в. до н.э.). Архимед написал знаменитый труд Псаммит, или Исчисление песчинок». В нем он подсчитал число песчинок, которые могли бы заполнить шар радиусом 15.000.000.000.000 километров. До Архимеда в Древней Греции самым большим числом считалось 10.000.000 мириад. Мириадой называлось число 10000, от греческого слова «мирос» - «неисчислимо большое». Архимед начал считать мириадами мириад и в результате вывел свою систему счисления. Наибольшее число его системы содержит 80.000.000.000.000.000 нулей. Это число так велико, что если напечатать его обыкновенным шрифтом на машинке, то этой лентой можно опоясать Земной шар по экватору более 2 миллионов раз. Даже ракете с первой космической скоростью (8км/с) пришлось бы лететь вдоль этой ленты более 300 лет. Вот до какого огромного числа простирается натуральный ряд. Но и это число не последнее. За ним еще числа, числа, числа, числа… до бесконечности. Если натуральный ряд чисел кажется вам скучным и однообразным, всмотритесь в него повнимательнее, и вы найдете много удивительного и неожиданного.
Натуральные числа понадобились человеку прежде всего для счёта предметов, и мы, наверное, ничего тут пояснять не будем, ведь каждый знает смысл вопроса «сколько?», каждый умеет считать. Есть ещё одно назначение натуральных чисел — отвечать на вопрос «который?».
Таким образом, натуральные числа имеют две основные функции:
- характеристика количества предметов;
- характеристика порядка предметов, размещенных в ряд.
Развитие числовой записи.
Самая ранняя запись чисел производилась еще в отдаленные эпохи жизни человечества – это узелки, зарубки, нанизанные на шнур раковины или орехи.
Числовая запись в Древнем Вавилоне производилась на глиняных табличках. Орудием служил трехгранный брусок, которым на глине выдавливались клиновидные фигуры. Меняя положение клинка, можно было обозначать разные числа. Например, знак ▼ означал единицу, ◄ – десяток. При помощи этих знаков, применяя метод сложения, можно было выражать и многозначные числа .Египетская запись чисел совершалась с помощью отдельных рисунков. Египтяне придумали особые знаки для единиц, десятков, сотен и других больших чисел. Записи производились преимущественно красками на папирусе. Иногда же материалом для записи служили камень, дерево, кожа, холст.
Индейцы племени майя писали любое число, используя только точку, линию и кружочек.
Римляне заимствовали метод записи чисел у одного из племен Древней Италии. Числа выражались при помощи букв. А именно числа 1, 5, 10, 50, 100, 500 и 1000 обозначались буквами I, V, X, L, C, D и M. Римская запись чисел широко используется и в наше время. Для запоминания обозначений цифр в порядке убывания существует такая шуточная фраза: «Мы Дарим Сочные Лимоны, Хватит Всем И еще останется».
Цифровые знаки Индии не совпадают по очертаниям с современными, но имеют с ними сходство. В то время как у других народов для записи чисел употреблялось несколько десятков различных знаков, у индийцев их число снизилось до 10, включая и обозначение ноля. Писали индийцы на белой доске, засыпанной красным песком. Орудием для записи служила палочка.
У народов, входивших в состав арабского государства, первым крупным математиком был ученый аль-Хорезми. Его сочинение по арифметике дошло до нашего времени только в переводе на латинский язык. Оно сыграло значительную роль в развитии европейской математики, так как именно в нём европейцы познакомились с индийскими методами записи чисел. Вследствие того, что эти сведения были получены европейцами из книги, автор которой жил в арабском государстве и писал на арабском языке, индийские цифры стали именоваться «арабскими». Этими цифрами пользуется сейчас весь мир.
Существует интересная версия, что вид арабских цифр связан с количеством углов в их написании. Со временем углы сгладились, и цифры приобрели привычный для нас вид.
Славянская система записи чисел основана на кириллице. Отдельная буква в ней соответствовала каждой цифре (от 1 до 9), каждому десятку (от 10 до 90) и каждой сотне (от 100 до 900). Чтобы отличать буквы от цифр, над буквами с числовым значением ставили специальный знак – титло. Большие числа выражались словами. Например, 10 000 – тьма, 100 000 – легион, 1 000 000 – леодр. Эта система чисел использовалась в России до тех пор, пока Петр I не заменил её арабскими цифрами. Сейчас подобная числовая запись используется в некоторых церковных книгах, которые написаны на старославянском языке.
Четыре действия арифметики.
Сложение и вычитание.
Числа были придуманы людьми, чтобы обозначать количество предметов: стрел в колчане, мешков зерна в амбаре, овец в стаде. Но эти величины непостоянны – количество предметов то увеличивалось, то уменьшалось, поэтому важно было складывать и вычитать.
Когда числа были небольшими, это делалось просто: рисовали черточки на дереве, завязывали узелки на веревке. Пасет пастух стадо овец, на поясе у него веревка, а на веревке столько узелков, сколько овец в стаде. Родился ягнёнок – пастух завязал ещё один узелок. Утащили волки ещё двух овец - развязал два узелка. Вместо верёвки часто использовали живой «вычислительный прибор» - пальцы. Обычно так считают малыши. Большого труда стоит преподавателям отучить первоклассников от такого счёта и приучить к устному счёту в «уме». Однако наиболее стойкие продолжают считать на пальцах, держа руки в карманах, чтобы не видел учитель. А один первоклассник складывал числа, глядя на циферблат часов.
С развитием цивилизации появились различные приёмы счёта. Они были необходимы и купцам, и ремесленникам, и тогдашним «банкирам» - ростовщикам. Однако искусством счёта владели не многие. Для расчётов привлекали специально обученных людей – счетчиков.
Умножение.
Умножение чисел сейчас изучают в первом классе школы. А вот в Средние века совсем немногие владели искусством умножения. Редкий аристократ мог похвастаться знанием таблицы умножения, даже если он окончил европейский университет.
За тысячелетия развития математики было придумано множество способов умножения чисел. Итальянский математик Лука Пачоли в своём трактате «Сумма знаний по арифметике, отношениям и пропорциональности»(1494 г.) приводит восемь различных методов умножения. Один из них носит название «ревность», или «решётчатое умножение». Сначала рисуется прямоугольник, разделённый на квадраты, причём размеры сторон прямоугольника соответствуют числу десятичных знаков у множимого и множителя. Затем квадратные клетки, делятся по диагонали, и «…получается картинка, похожая на решётчатые ставни-жалюзи, - пишет Пачоли. – Такие ставни вешались на окна венецианских домов, мешая уличным прохожим видеть, сидящих у окон дам и монахинь».
В России среди крестьян некоторых губерний был распространён способ, который не требовал знания всей таблицы умножения. Он получил название «русский крестьянский способ умножения». Здесь необходимо было лишь умение умножать и делить числа на 2. Перемножим ещё раз числа 1998 и 987 этим способом. Напишем одно из чисел слева, а второе – справа на одной строчке. Левое число будем делить на 2, а правое – умножать на 2 и результаты записывать в столбик.
Если при делении возникнет остаток (т. е. делимое окажется нечётным числом), то он отбрасывается. Умножение и деление на 2 продолжаем до тех пор, пока слева не останется 1. Затем вычеркнем те строчки столбиков, в которых слева стоят чётные числа. Теперь сложим оставшиеся числа в правом столбце – получим 1 972 026. Это и есть произведение перемножаемых чисел.
Деление.
Хотя умножение в старину и считалось нелёгким делом, однако деление было ещё сложнее. В Италии до сих пор сохранилась поговорка «Трудное дело деление». Так обычно говорят, когда оказываются перед почти неразрешимой проблемой.
В Средние века людей, умевших производить деление, можно было пересчитать по пальцам. Их уважительно называли «магистрами деления». Они переезжали из города в город по приглашениям купцов, желавших привести в порядок свои счета.
Методов деления придумано немало. Монах-математик Герберт, будущий Папа Римский Сильвестр II., привёл в своих сочинениях несколько способов деления на абаке. При этом он придерживался таких принципов: - как можно меньше применять таблицу умножения, в частности не использовать умножение в уме двузначных чисел на однозначные; - избегать вычитаний, заменяя их сложениями; - работа должна выполняться автоматически, без проверок, при которых тоже могут появиться ошибки. Такие строгие ограничения он ввёл, учитывая, сколь неграмотны были монахи, производившие таблицы умножения. Но в итоге, правила Герберта оказались настолько сложными, что не были понятны даже самым прилежным счётчикам-абацистам. Когда в Европе появился арабский способ деления, основанный на принятой сейчас позиционной десятиной системе счисления, он получил название «золотое деление». Им мы пользуемся и по сей день. А метод Герберта стали называть «железным делением».
Кроме этих способов были и другие. Например, раскладывали делитель на множители, а затем последовательно делили делимое на эти числа. При этом для деления на однозначные числа существовал специальный метод.
Долгое время в Европе конкурировали два способа деления: «золотое деление» и «галера». Прежде всего, напомним правила «золотого деления». Разделим 987 654 на 346
Заключение.
Потребность в счете, измерениях, и желании проследить за изменением количественной характеристики, послужило толчком в зарождении математики и основными математическими действиями над числами. История показывает, как тяжел был путь выбора наиболее удобного варианта действий над числами. И не в последнюю очередь от этого зависит дальнейшее распространение и развитие математики как науки. Изучая исторические процессы развития общества и математики, видно, что понятие числа прошло длинный исторический путь развития и наука о числах и действиях над ними необходима для прогрессивного развития человеческого общества. Числа составляют часть человеческого мышления и мы порой не отдаем себе отчета, насколько важны они в нашей жизни.
При исследовании истории возникновения чисел была установлена зависимость между возникновением чисел и необходимостью выражения всех чисел знаками. Эта зависимость повлияла на появление знаков-цифр, которые заменили другие не совсем удобные способы обозначения. Самым ценным вкладом в сокровищницу математических знаний человечества является употребляемый нами способ записи при помощи десяти знаков чисел: 1,2,3,4,5,6,7,8,9,0.
Литература.
1. Выгодский М.Л. Арифметика и алгебра в древнем мире М. 1967г.
2. Депман И. Истории Арифметики М. 1965г.
3. Депман И. Мир чисел М.1966г.

Приложенные файлы


Добавить комментарий