Реферат


Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
«Тольяттинский государственный университет сервиса (ТГУС)»
А. И. БОЧКАРЁВ, Т. С. БОЧКАРЁВА,
С. В. САКСОНОВ
КОНЦЕПЦИИ СОВРЕМЕННОГО
ЕСТЕСТВОЗНАНИЯ
Учебник
Тольятти
2008
УДК 5(075.8)
ББК 20я73
Б 86
Рецензенты:
д.б.н., проф., засл. деятель науки РФ, чл.-корр. РАН,
директор Института экологии Волжского бассейна Г. С. Розенберг;
д.т.н., проф., засл. деятель науки и техники РФ,
президент Тольяттинского отделения РАЕН В. И. Столбов
Б 86 Бочкарёв А. И.
Концепции современного естествознания : учебник для студентов вузов / А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов ; под ред. проф. А. И. Бочкарёва. – Тольятти : ТГУС, 2008. – 386 с.

Учебник написан в строгом соответствии с Государственным образовательным стандартом по дисциплине «Концепции современного естествознания» с учетом многолетнего опыта преподавания данной дисциплины в Тольяттинском государственном университете сервиса, а также опытом Интернет-тестирования Минобрнауки РФ.
В учебнике рассмотрены основные концепции современного естествознания с позиций синергетической парадигмы фундаментальности, реализуемой авторами при организации синергетической образовательной среды по дисциплинам кафедры «Современное естествознание» ТГУС.
Рассмотрены эволюция современного естествознания от античности до наших дней, концепции самоорганизации в физике, химии, биологии, психологии, принципы целостности естествознания, механизмы языка, принципы синергетики, формирование эволюционного естествознания, созидание синергетической среды в системах различной природы.
Содержание и нелинейная структура учебника разработаны как мультидисциплинарный дидактический комплекс, формирующий целостное мировоззрение, инновационную культуру студентов, магистров и аспирантов.
Учебник адаптирован к технологии дистанционного обучения «Прометей» и является основной (системообразующей) частью учебно-методического комплекса по этой дисциплине (учебное пособие для самостоятельной подготовки, лабораторный практикум с виртуальными работами, база данных из вопросов (более 3000 вопросов), лекций-презентаций и видеолекций).
Учебник может быть полезен не только студентам вузов, но и аспирантам, магистрам и преподавателям, а также тем, кто интересуется достижениями и проблемами современного естествознания.

Бочкарёв А. И., Бочкарёва Т. С.,
Саксонов С. В., 2008
Тольяттинский государственный
университет сервиса, 2008
ПРЕДИСЛОВИЕ
Специфика учебной дисциплины «Концепции современного естествознания», ориентированной на студентов гуманитарных и социально-экономических специальностей, состоит в том, чтобы системно понятным языком представить весь спектр концептуальных разработок современного естествознания с пользой для жизни и образования будущих специалистов, бакалавров, магистров.
Концепция естественнонаучного образования гуманитариев и ее воплощение далеки от идеала, и много лет дискредитировалась исходная идея путем освоения этой дисциплины разными специалистами: от физиков до гуманитариев, излагающих в меру своей подготовки и пристрастий целый курс, сделав его, таким образом, безпредметным. Большей дискредитации подвергается дисциплина после чтения ее гуманитариями с попытками широких обобщений, что способствует формированию целостного видения мира и культуры мышления, но не несет толкового естественно-научного знания, однако, так и у «чистых физиков» возникает ситуация неприменимости данного курса в жизни и профессиональной деятельности из-за излишней конкретики. Так где же золотая середина?
В любой методологии должен присутствовать концептуальный стержень – главная идея, реализация которой и образовала бы структуру представления данного курса, составляла бы его внутреннюю логику. На взгляд авторов данного учебника такой концептуальной идеей является синергетическая парадигма фундаментальности, находящаяся в корреляции с главной идеей и традициями русского космизма, «нового диалога человека и природы», отражающие главные отличия научного постижения природы. Современное естествознание все больше становится наукой о развитии: в биологии, синергетике, неравновесной термодинамике, космологии, в котором преобладает синергетический подход.
Сумма частных картин не дает цельной картины и не только из-за неконтролируемого взаимодействия в природе и ничейных территорий (промежуточных предметов) разных наук, сколько в том, что такой подход и тенденции к дифференциации оставляют за пределами наших формализованных знаний большие массивы тех знаний, умений и обладаний, которые как бы «выбрасывают с водой и ребенка».
Чтобы обойти эту неопределенность проф. А.Д. Сухановым обосновывается идея неконтролированного воздействия и трансдисциплинарные (над) дисциплинарные идеи. Остается только недоумевать, а есть ли предмет у современного естествознания, который по стихийному подходу авторов многих учебников по дисциплине «Концепции современного естествознания» видимо мыслится как некоторый многоголовый монстр, содержащий предметы (дисциплины), составляющие по всеобщему заблуждению междисциплинарный синтез этого, хотя и ограниченного множества предметов. Все дело в том, что синтез возможен по принципу наложения (суперпозиции) и справедлив лишь для линейных замкнутых систем. Совокупность наук и дисциплин, составляющих современное естествознание, является нелинейной, открытой, самоорганизующейся системой, для которой принцип суперпозиции несправедлив. Стало быть, имеет место не интеграция ряда дисциплин, не декларируемый междисциплинарный их синтез, и, к сожалению, реализованный во многих учебниках по КСЕ дифференциальный подход к изучению природы по частям. Реальность такова: хотим мы этого, или не хотим, в этом курсе имеет место глубокое взаимопроникновение, мультидисциплинарное взаимодействие, «эмерджентный нелинейный синтез» с алгоритмом реальности открытых нелинейных систем различной природы (прим. ред.). Этот алгоритм работает в природе, особенно в живой, имеет отношение к естественному отбору, борьбе за существование к превосходству сложного, и приоритету простого. Поэтому необходимо постижение Природы в дисциплине «Концепции современного естествознания» в соответствии с синергетической парадигмой фундаментальности без отторжения.
Учебник явился результатом многолетнего преподавания курса в Тольяттинском государственном университете сервиса, постановки его в соответствии с двумя поколениями государственного образовательного стандарта, написанием учебника, имеющего рекомендательный гриф Минобразования (1998), ряда учебных пособий, создания информационно-синергетической среды данной дисциплины на современном уровне.
Авторы благодарны докторанту, к.б.н., доц. Васюкову В.М. за правку и замечания к разделам 3,5;6; аспиранту Бочкаревой Р.А. за верстку и разработку всего оригинала-макета учебника.
Авторы благодарны студентам ТГУС, среди которых апробировался материал настоящего учебника, на лекционных, семинарских, занятиях, индивидуальных творческих работах, исследованиях восприятия его студентами, поэтому содержание приняло лаконичный, читаемый и обучаемый вид.
Учебник полезен как для самообразования, так и контроля знаний и не исключает, а предполагает изучение других работ по данной дисциплине, приведенный в списке литературы и содержащийся авторский учебный материал в базе данных сайта кафедры «Современное естествознание» Тольяттинского государственного университета сервиса для системы дистанционного обучения «Прометей».
1. ЕСТЕСТВЕННО-НАУЧНАЯ И ГУМАНИТАРНАЯ ФОРМЫ КУЛЬТУРЫ. НАУЧНЫЙ МЕТОД
1.1. Естественно-научная и гуманитарная формы культуры
Под культурой в самом широком смысле принято понимать все то, что создано человечеством в ходе его исторического развития.
Иначе говоря, культура – это совокупность созданных человечеством материальных (материальная культура) и духовных (духовная культура) ценностей, а также способность человека производить и использовать данные ценности.
Нельзя забывать, что культура воплощает целостную систему представлений о мире, которая характеризует уровень развития, как всего общества, так и отдельной личности.
Понятие культуры в наше время недопустимо ассоциировать только с гуманитарным знанием, включающим философию, психологию, теорию литературы, музыки, изобразительного искусства и их отдельные феномены в виде тех или иных произведений. Культура определяет духовный мир человека, а он между тем формируется также и под воздействием осмысления Природы, поэтому естественнонаучное знание – это также часть общечеловеческой культуры.
Классическая и неклассическая стратегии естественнонаучного мышления развивались на основе наблюдений за природой и оформились благодаря естествознанию, так что можно уверенно утверждать, что оно обогатило сокровищницу мировой культуры бесценным вкладом – даром понимать природу и одновременно осознавать зависимость характера получаемого знания от своей мысленной позиции. В определенном смысле человек понял, что природа открывается ему настолько, насколько он внутренне настроен что-либо узнать о ней. Где, как не в этом, можно увидеть ярчайшее проявление единства человека и природы, гуманитарного и естественнонаучного начал культуры.
Очевидно, что человек может существовать только при соблюдении определенных условий бытия. Прежде всего, должны быть удовлетворены его потребности в пище, одежде, жилище, тепле, т.е. его материальные (биологические) потребности. С развитием цивилизации материальные потребности непрерывно растут.
Однако материальные потребности людей не исчерпывают всех их потребностей. Человек – существо разумное и биосоциальное. В связи с этим у человека, помимо материальных, имеются еще и так называемые духовные потребности. К понятию «духовное» обычно относят сознание, мышление, психологию, волю, характер, ощущения, естественную потребность человека в познании окружающего мира (природы и общества).
Таким образом, духовные потребности человека – это потребности в развитии его знаний, чувств и ощущений с целью более полного и всестороннего ощущения красоты мира, развития воли, характера и т.д. Все это создает духовный мир человека, его духовную культуру. Развитие и совершенствование духовного мира является, в конечном счете, одним из важнейших элементов смысла существования человека на Земле.
Для удовлетворения духовных потребностей люди создали науку, искусство, философию, литературу, мораль, религию и т.д. Материальные носители духовного – язык, книги, художественно-изобразительные средства.
Осваивая эти ценности, человек постепенно развивает свой внутренний духовный мир: знания, интересы, ценности, т.е. все элементы духовной культуры. И, в конечном счете, можно образно сказать, что именно духовная культура делает человека Человеком.
Важнейшей частью духовной культуры, как было уже отмечено, наряду с искусством, правосознанием, религией и т.д., является наука.
Наука – это особая сфера деятельности человека, направленная как на получение новых знаний, так и на разработку новых методов их получения.
Современная наука – сложная и многообразная система отдельных дисциплин. Науковеды насчитывают их несколько сотен.
К настоящему времени сложилась устойчивая традиция разделения всех дисциплин на две большие группы: естественно-научные и социогуманитарные знания, в связи, с чем выделяют два типа нар естественные и гуманитарные. Очевидно, что естественные и гуманитарные науки различаются, прежде всего, объектами исследования первые изучают природу, а вторые – человека и общество, характеризуются присущими только им особенностями познавательно деятельности. Они различаются не только объектом познания, но средствами и методами познания, формами результатов познания стилем мышления и методологическими установками.
Совокупность систем ценностей, идеалов, стилей мышления, методологических установок, присущих отдельным дисциплинам и их комплексам, называют научной культурой.
Различают формы культуры естественно-научного и гуманитарного познания. Так возникло и получило широкое распространение представление о «двух формах культуры» в науке − естественно-научной и гуманитарной.
Естественно-научная форма культуры – система знаний о природе.
Гуманитарная форма культура – система знаний о позитивно значимых ценностях бытия человека, социальных слоев, государства, человечества.
Наличие в единой культуре двух разнородных типов знания (естественно-научного и гуманитарного) стало предметом философского анализа еще в XIX в. Однако в XX в. произошел заметный и все более увеличавающийся разрыв между естественно-научной и гуманитарной культурами. Это связано с тем, что XX в. отмечен грандиозными успехами естествознания и последовавшей за этим научно-технической революцией. Овладение атомной энергией, создание всемирных глобальных телевизионных систем, выход человека в космос, расшифровка генетического кода и т.д. – эти и другие достижения естественно-научной культуры существенно изменили стиль и образ жизни человека. Гуманитарная же форма культуры предъявить что-либо равноценное не смогла.
Принимая также во внимание то обстоятельство, что развитие естествознания в XX в. связано с глобальной математизацией науки, приведшей к успешному применению математического моделирования для описания явлений и природных процессов, и на этой основе получены выдающиеся достижения и открытия, естественные науки приобрели статус «точных наук», а естествознание – статус «точного знания». Соответственно гуманитарные науки в массовом сознании перешли в разряд «неточных наук», или вообще «не наук».
Специфика естественно-научной формы культуры заключается в том, что знание о природе отчуждено от исследователя. Последний находится как бы за пределами сферы знания, сторонним наблюдателем. Поэтому естественнонаучное знание может постоянно совершенствоваться: на смену одному естествоиспытателю приходит другой, потом третий и т. п. Одни и те же естественно-научные законы могут открываться разными учеными, могут быть «синтетическими», т. е. включать в себя несколько различных открытий.
В то же время естественно-научное знание становится все более специализированным, во многих случаях недоступным представителям других специальностей. В связи с этим широкое распространение получила научно-популярная литература, как бы «перекидывающая мост» между обыденным сознанием и узкоспециализированным научным знанием.
Когда возникли и обособились отдельные науки о природе, вызревание подобных идей не то чтобы затормозилось, но перешло в латентную (скрытую) фазу. Долгое время они формировались подспудно, так как параллельно шел независимый процесс накопления и осмысления того, что происходит в природе. Мультидисциплинарные идеи обретали плоть по мере умножения конкретных знаний.
Гуманитарная форма культуры ориентирована на общечеловеческие ценности, такие, как гуманизм, демократия, мораль, права человека и т. п. Но исследователь этой культуры находится внутри рассматриваемых проблем. Философские системы, религии, филологические исследования включают в себя особенности, присущие их творцу. Вся его жизнь часто неразрывно вплетена в «ткань» этих систем, религий и т.п. Поэтому и методы исследования, используемые в области гуманитарного знания, разительно отличаются от естественно-научных и сводятся преимущественно к интерпретациям, толкованиям, сравнениям.
Постепенно между двумя типами наук и форм культур образовалась научная пропасть, которая постепенно расширялась, и ученые, посвятившие себя изучению естественных и гуманитарных наук, стали все меньше понимать друг друга. Возникла опасная тенденция раскола научной интеллектуальной элиты современного общества.
К счастью, в последние десятилетия процесс конфронтации двух типов наук стал сменяться их сближением, а в ряде случаев и процессами интеграции.
Сама дифференциация наук по предметам изучения возникла сравнительно недавно. В древности существовала единая наука о природе. Она называлась натурфилософия. На природу смотрели как на единую сущность, и поэтому это была одна наука.
С течением времени в связи с расширением практических потребностей человека появились спектр отдельных наук о природе. Сначала астрономия и небесная механика, потом механика земных движений, далее учение о теплоте. Возник спектр междисциплинарных наук, таких как биохимия, физическая химия, и др. из-за специфических предметов исследования. При изучении пограничных явлений возникли методы смежных наук, в которых появилась новая тенденция, заключающаяся в интеграции научного знания, ибо много наук порождало больше незнания, специфичность отдельных наук и их языка. Создаются физическая, химическая, биологическая и др. картины мира, каждые из которых имеют свои границы. Вот и пришли к парадоксальной ситуации изучения единой природы по частям, которые отнюдь не способны естественным образом к взаимному проникновению и взаимопониманию. Это случилось по причине ухода от единого предмета и объекта, как бы его не называли. Ведь на улице «чужих детей не бывает», а «у семи нянек – дите без глаз». Так может быть в этом и состоит тормоз развития цивилизации, как закате единой культуры, понимаемой как способ жизни, а не выживания по второму сценарию?
Сумма частных картин не дает цельной картины и не только из-за неконтролируемого взаимодействия в природе и ничейных территорий (промежуточных предметов) разных наук, сколько в том, что такой подход и тенденции к дифференциации и интеграции оставляют за пределами наших формализованных знаний большие массивы тех знаний, умений и обладаний, которые как бы «выбрасывают с водой и ребенка».
Обращаясь к аналогиям, вспомним, что в искусстве также существуют направления, различающиеся методами отражения действительности. Это реализм, модернизм, импрессионизм и т. д. Нам трудно было бы оценить достоинства живописного произведения, в котором причудливо сочетались бы разные стили. Эклектика не порождает гармонии. Также и дисциплина «Концепции современного естествознания» может выродиться в набор большого числа отдельных наук, не рождающих вместе синергетического эффекта постижения природы на фундаментальном уровне без отторжения, поскольку упорное деление единого предмета по определению отторгает субъекта и делает его «сторонним наблюдателем», недоумевающим от того, что его готовят для энциклопедических знаний всего того, что содержится в этом множестве наук никогда не используемых в его жизни.
Необходимо отдавать себе отчет в том, что современное естествознание как мультидисциплинарная наука вовсе не сводится к совокупности знаний, полученных в частных науках. Оно использует эти знания, но особым образом. Здесь подразумевается более высокий уровень интеграции, усиления, взаимопроникновения, чем при традиционном междисциплинарном синтезе, а именно мультидисциплинарный синтез, порождающий взаимопроникновение наук, взаимоусиление итогового познавательного результата. Дело в том, что современное естествознание – это мультидисциплинарная научная область знания, предназначенная для формирования умений и обладаний человека, являющегося часть естественной и искусственной природы. Этим обозначается его направленность на поиск единых, универсальных закономерностей природы, воплощенных в объединяющих идеях и представлениях, признаваемых во всех естественных науках. Поэтому для становления современного естествознания необходим очень высокий уровень развития частных наук. Сейчас еще нельзя сказать, что он достигнут, поэтому современное естествознание находится в стадии формирования своих фундаментальных парадигм (систем основополагающих представлений), объединяющей идеей, например, служит синергетическая парадигма фундаментальности.
Другая важнейшая особенность современного естествознания связана с тем, что осмысление накопленного знания невозможно без исследования процедур его получения, т.е. знания истории науки и техники. Они принципиально влияют на результаты, формируя ту или иную стратегию научного мышления. Однако сейчас отметим, что на этом уровне современное (со-временное) естествознание интегрирует не только совокупные знания о природе, но и возвращает исследователя в новый диалог с природой на фундаментальном уровне без отторжения. Человек не противопоставляется миру природы, а рассматривается как его органическая часть.
В XX в. на основе неклассической стратегии естественнонаучного мышления зародилась новая неклассическая научная ментальность, главный смысл которой – отражение мира не в виде аддитивного множества объектов, явлений и типов, форм культур, а в виде сложной нелинейной, (мультидисциплинарной) системы взаимодействия частей и целого. Благодаря ей мир в нашем сознании обретает целостность, т. е. становится принципиально не делимым на отдельные фрагменты. Он наполняется внутренней гармонией вопреки внешне разрозненным и неоднозначным проявлениям. За многогранностью и многообразием объектов и процессов нашему пониманию открывается сложность открытого нелинейного мира.
В понимании всего сказанного выше заключается инновационная культура как специфика мышления современного образованного человека (см. разд. 9.7). Благодаря системе образования эти качества личности должны формироваться и воспроизводиться в последующих поколениях. Тем более огорчительно, что современная система образования фактически не выполняет этой миссии, т.е. не формируем инновационной и интеллектуальной культуры в процессе обучения, воспитания и развития. Даже в наметившемся «болонском процессе» в двухступенчатом образовании бакалавр-магистр образуются лестница компетенций: знать, уметь, владеть, быть, как бы перевернув познание с ног на голову и отделив его, т.е. субъекта познания (человека) от объекта (природы). Древние люди по меткому выражению П. Флоренского понимали, что «прежде чем хотеть, нужно быть»: в единстве с природой и познавать, не отторгаясь от нее. Стало быть, что стоит такое образование, которое, по сути, подразумевает бытие после становления. По алгоритму И. Пригожина новый диалог человека и природы должен происходить «от бытия к становлению, от существующего к возникающему», т.е. постижение природы на фундаментальном уровне без отторжения. То есть целью постижения должно быть не владение, а обладание, присущее познающему субъекту на всех стадиях, поскольку «знание действительно становится силой, когда через владение приводит к самообладанию» (прим. ред.) Таким образом, лестница компетенций должна быть такой: быть, (если не будешь, то и не станешь), знать, уметь, обладать. Что может быть выше этого? Владеть (овладеть можно и силой) не обладая это временно, поскольку силу и власть можно потерять, а «обладать, владея» это нельзя потерять, отнять, купить и т.д., поскольку это является атрибутом, внутренней сущностью образованного интеллигентного человека.
Классическая ментальность более соответствует грубому повседневному опыту человека, а потому ее становление происходит без особых затруднений, как бы самопроизвольно. Несмотря на это, наше образование от школы до университета построено так, что львиная доля усилий (явных и неявных) тратится именно на ее усовершенствование. При этом для всего иного уже не остается времени, и большая часть студентов университетов оказывается обладателями преимущественно классического, а не синергетического стиля мышления. Резонно все же поставить вопрос: а так ли уж это опасно?
Нам думается, что опасно по следующим причинам. Во-первых, такая личность духовно обделена – она имеет представление лишь о части мира, потому что неклассическая его сторона навсегда скрыта от нее. Во-вторых, доминирование классического подхода в преподавании настраивает на восприятие природных и социальных процессов как некоего нарушения здравого смысла, как экзотического отступления от нормы, требующего для своего объяснения особых, специфических теорий. За подобными представлениями кроется не только общая научная малограмотность, которая не должна проявляться у образованного человека. Это чревато и профессиональной несостоятельностью, поскольку инновационная культура определяет успешность деятельности в любой сфере. В-третьих, подобные реакции к тому же вызывают и психологический дискомфорт – ведь встречаясь с неожиданными для классического мировоззрения фактами, человек испытывает эмоциональный и интеллектуальный стресс вместо того, чтобы воспринять их как естественное проявление неклассичности, нелинейности окружающего мира.
Наилучшим тренировочным полем для овладения неклассической стратегией мышления является процесс освоения знаний в естественнонаучной области.
Человеческое общество вступило в век господства принципиально новых, высоких технологий в различных сферах деятельности. И совершенно естественно, что новому, более высокому уровню цивилизации должна соответствовать новая, более высокая ступень развития человека и человеческого общества в целом в их взаимодействии с природой. Возникает задача целостного, гармонического развития духовных и материальных сил человека. А путь к ее решению – в единении и интеграции естественных и гуманитарных знаний, путь к единой (инновационной) культуре.
1.2. Научный метод
Исследование феномена история науки непременно приводит к конкретным личностям – ученым, сделавшими открытия, изобретения, являющиеся «посредниками» в инновационной среде развития цивилизации. Современное естествознание немыслимо без истории науки и техники, однако преподавание дисциплины «Концепции современное естествознание» может стать неэффективным, если будет превышена мера соотношение содержания истории науки и техники и самого предмета современного естествознания. По истории науки и техники последнее время написано много хороших пособий, и они имеют самостоятельный интерес.
С течением времени искусство сбора научной информации и выработки на ее основе определенных представлений подразделилось на ряд последовательных этапов. Появились научные методы, объединение которых в определенную систему привело к созданию методологии проведения научных исследований. Научный метод начинается с наблюдения объектов и событий и ведет к построению научных теорий и их проверке.
Научный метод – это совокупность приемов или операций практической или теоретической деятельности.
Конкретные, частные, специальные приемы и способы исследования в разных науках могут заметно отличаться друг от друга, но общий подход к познанию, т.е. метод исследования, остается в сущности тем же самым. В этом смысле частные приемы и методы познания, используемые в конкретных науках, можно охарактеризовать как тактику исследования, а общие принципы и методы – как его стратегию.
Для анализа и оценки различных методов существует особое учение – методология.
Методология – это учение о принципах построения, формах и способах научного познания.
В методологии обычно выделяют общие методы исследования, используемые большинством наук на разных этапах познавательной деятельности.
Следует подчеркнуть, что методология тесно смыкается с так называемой формальной логикой, которая главное внимание направляет на выяснение структуры готового, оформившегося знания, на описание его формальных связей и элементов на языке символов и формул при отвлечении от конкретного содержания высказываний и умозаключений.
Метод – есть совокупность приемов и операций практического и теоретического познания действительности. Каждый акт познавательного процесса включает в себя в той или иной степени как наглядно-чувственные, эмпирические, так и абстрактные, теоретические элементы. Каждый акт живого созерцания пронизан мыслью, опосредован понятиями, категориями.
Исторически путь естественно-научного познания окружающего мира начинался с живого созерцания – чувственного восприятия фактов на основе практики. От живого созерцания человек переходит к абстрактному мышлению, а от него – снова к практике, в которой он реализует свои мысли, выверяет их истинность. Идеи служат направляющей силой, но для своего воплощения они должны постоянно подтверждаться через наблюдения, эксперименты, т.е. посредством эмпирического познания. Эмпирическое и теоретическое познание – это единый процесс, характерный для любого естественно-научного исследования на любой его стадии. На эмпирическом и теоретическом уровнях используется понятийный аппарат мышления – понятия, суждения, умозаключения.
Эмпирический уровень познания. Эмпирическое познание имеет дело с фактами и их описанием. Проследим кратко всю последовательность наблюдаемых действий.
Вся научная информация основана на наблюдениях и подвергается объективной проверке. Непосредственные наблюдения ограничиваются только ощущениями, полученными от пяти органов чувств (зрение, слух, обоняние, осязание, вкус). Эти данные можно проверить, поскольку наши органы чувств могут обманываться (зрительные и звуковые галлюцинации, различное восприятие тепла и холода, вкусовых ощущений, запахов в зависимости от условий и т.д.). На этих иллюзиях часто строятся фокусы. До того как наблюдения станут фактом, они должны быть проверены.
Ощущение – это простейшие чувственные образы, отражения, «копии» предметов. Целостный образ, отражающий непосредственно воздействующие на органы чувств предметы, их свойства и отношения, называется восприятием. Опыт восприятия каждого из органов чувств опосредует восприятие, осуществляемое с помощью других органов чувств. Решающую роль играет зрение. Способность мозга запечатлевать, сохранять воздействие или сигналы вешней среды и в нужный момент воспроизводить их называется памятью. Память играет очень важную познавательную роль в жизни человека. Психические явления, сменяющие друг друга и не связанные с предшествующими явлениями прежде, чем закрепиться в памяти, не могут остаться фактом сознания. В результате восприятия внешних воздействий и сохранения их во времени памятью возникают представления.
Представления – это образы тех объектов, которые когда-то воздействовали на органы чувств человека, а потом восстанавливаются по сохранившимся в мозгу следам и при отсутствии этих объектов. Ощущения и восприятия – начало возникновения сознательного отражения. Память закрепляет и сохраняет полученную информацию. В представлении уже теряется непосредственная чувственная данность объекта сознания. Представление – промежуточная ступень при переходе от ощущения к мысли.
Научный факт. Необходимое условие естественно-научного исследования состоит в установлении фактов. Эмпирическое познание поставляет науке факты, фиксируя при этом устойчивые связи, закономерности окружающего нас мира. Без теоретического осмысления невозможно целостное восприятие действительности, в рамках которого многообразные факты укладывались бы в некоторую единую систему.
Наблюдение – преднамеренное, планомерное восприятие, осуществляемое с целью выявить существенные свойства объекта познания. Наблюдение относится к активной форме деятельности, направленной на определенные объекты и предполагающей формулировку целей и задач.
Эксперимент – метод, или прием, исследования, с помощью которого объект или воспроизводится искусственно, или ставится в заранее определенные условия. Метод изменения условий, в которых находится исследуемый объект, – это основной метод эксперимента.
Мышление – высшая ступень познания. Хотя его источник – ощущения и восприятие, но оно выходит за их границы и позволяет формировать знания о таких объектах, свойствах и явлениях, которые не доступны органам чувств. Мышление – целенаправленное, опосредованное и обобщенное отражение в мозгу человека существенных свойств, причинных отношений и закономерных связей вещей. Основными формами мышления являются понятия, суждения и умозаключения.
Понятие – это мысль, в которой отражаются общие и существенные свойства объектов и явлений. Понятия не только отражают общее, но и группируют, классифицируют объекты в соответствии с их различиями. Понятия возникают и существуют в определенной связи, в виде суждений. Мыслить – значить судить о чем-либо, выявлять определенные связи и отношения между различными сторонами объекта или между объектами.
Суждение – форма мысли, в которой посредством связи понятий утверждается (или отрицается) что-либо о чем-либо. По отношению к действительности суждения оцениваются как истинные или ложные. К тому или иному суждению человек может прийти путем непосредственного наблюдения какого-либо факта или опосредованным путем – с помощью умозаключения.
Умозаключение представляет собой рассуждение, в ходе которого из одного или нескольких суждений, называемых предпосылками или посылками, выводится новое суждение (заключение или следствие), логически непосредственно вытекающее из посылок.
Главная задача теоретического мышления – привести полученные данные в стройную систему и создать из них научную картину мира, лишенную логического противоречия.
Важной формой теоретического мышления является гипотеза (предположение) – вид умозаключения о сущности еще недостаточно изученной области действительности. Гипотеза требует проверки и доказательства, после чего она приобретает характер теории – системы обобщенного знания, объясняющей те или иные стороны действительности.
Теоретический уровень познания. Отдельные наблюдения и эксперименты отвечают на строго конкретные вопросы. Затем из отдельных «кирпичиков» информации складывается целое здание – теория. Однако при построении теории, как правило, используются уже другие, более высокие уровни познания, так называемые методы теоретического познания: формализация, абстрагирование, индукция и дедукция, анализ и синтез, моделирование.
Одна из важных задач естественно-научного познания – обобщение всего известного об окружающем мире. Эксперимент и наблюдение дают огромное многообразие данных, порой не согласованных между собой и даже противоречивых. Главная задача теоретического мышления – привести полученные данные в стройную систему и создать из них научную картину мира, лишенную логического противоречия.
Важной формой теоретического мышления является гипотеза – предположение, исходящее из ряда фактов и допускающее существование объекта, его свойств, определенных отношений. Гипотеза – это вид умозаключения, пытающегося проникнуть в сущность еще недостаточно изученной области действительности. Гипотеза требует проверки и доказательства, после чего она приобретает характер теории – системы обобщенного знания, объяснения тех или иных сторон действительности.
Описание, объяснение и предвидение. Эмпирическое познание имеет дело с фактами и их описанием. При теоретическом анализе эмпирического материала логической обработке подвергается вся совокупность эмпирических данных, полученных различными путями и зафиксированных в различных источниках информации. В процессе теоретического мышления познание идет от фактов и их описания к интерпретации, объяснению их. Первым и необходимым условием объяснения фактов является их понимание, т.е. осмысление фактов в системе понятий данной науки. Понять явление означает – выяснить те особенности, благодаря которым оно играет определенную роль в составе целого, раскрыть суть, способ его возникновения.
В современном понимании методология – учение о структуре, логической организации, методах и средствах деятельности. В частности, методология естествознания – это учение о принципах построения, формах и способах естественно-научного познания. В естественно-научном исследовании природы важен не только хороший метод, но и мастерство его применения.
Сравнение есть установление сходства и различия объектов.
Анализ представляет собой мысленное или реальное разложение объекта на составляющие его части. Когда путем анализа частности достаточно изучены, наступает следующая стадия познания – синтез – объединение в единое целое расчлененных анализом элементов. Анализ фиксирует в основном то специфическое, что отличает части друг от друга. Синтез вскрывает то общее, что связывает части в единое целое. Анализ и синтез – основные приемы мышления.
Абстрагирование – мысленное выделение какого-либо предмета, в отвлечении от его связей с другими предметами, какого-либо свойства предмета в отвлечении от других его свойств, какого-либо отношения предметов в отвлечении от самих предметов. Абстрагирование составляет необходимое условие возникновения и развития любой науки и человеческого познания вообще. Абстрагирование – это движение мысли вглубь предмета, выделение его существенных элементов.
Идеализация как специфический вид абстрагирования – это мыслительное образование абстрактных объектов, не существующих и не осуществимых в действительности, но для которых имеются прообразы в реальном мире. Идеализация – это процесс образования понятий, реальные прототипы которых могут быть указаны лишь с той или иной степенью приближения.
Под абстрактным понимается одностороннее, неполное отражение объекта в сознании. Конкретное – результат научного исследования, отражение объективной действительности в системе понятий и категорий, теоретически осмысленное единство многообразного в объекте исследования. Методом теоретического познания объекта как целого является восхождение от абстрактного к конкретному.
Аналогией называется вероятное, правдоподобное заключение о сходстве двух предметов в каком-либо признаке на основании установленного их сходства в других признаках. Аналогии дают лишь вероятные заключения, они играют огромную роль в познании, так как ведут к образованию гипотез – научных догадок и предположений, которые в ходе последующего этапа исследований и доказательств могут превратиться в научные теории. Аналогия как метод чаще всего применяется в теории подобия, на которой основано моделирование.
В современной науке и технике все большее распространение получает метод моделирования, сущность которого заключается в воспроизведении свойств объекта познания на специально устроенном его аналоге – модели. Принцип моделирования составляет основу кибернетики. Моделирования стали применять в социологии, экономике и др.
В качестве метода естественно-научного исследования индукцию можно определить как процесс выведения общего положения из наблюдения ряда частных единичных фактов.
Дедукция – это процесс аналитического рассуждения от общего к частному или менее общему. Началом (посылками) дедукции являются аксиомы, постулаты или просто гипотезы, имеющие характер общих утверждений, а концом – следствия из посылок, теорем. Если посылки дедукции истинны, то истинны и ее следствия. Дедукция – основное средство доказательства. Применение дедукции позволяет вывести из очевидных истин знания, которые уже не могут с непосредственной ясностью постигаться нашим умом, однако представляются в силу самого способа их получения вполне обоснованными и тем самым достоверными. Дедукция, проводящаяся по строгим правилам, не может приводить к заблуждениям.
Открытие – установление новых, ранее неизвестных закономерностей, свойств и явлений материального мира, вносящих коренные изменения в уровень познания. За способностью как бы «внезапно» схватывать суть дела и чувствовать полную уверенность в правильности идеи по существу стоит накопленный опыт, приобретенные ранее знания и упорная работа ищущей мысли. При этом каждое новое открытие или изобретение подготовлено множеством предшествующих побед и заблуждений.
Одна из характерных особенностей творческой работы состоит в разрешении противоречий. Любое научное открытие или изобретение представляет собой создание нового, неизбежно связанного с отрицанием старого. В этом заключается диалектика развития мысли. Творческий процесс вполне логичен. Выстраивается логическая цепь операций, в которой одно звено закономерно следует за другим: постановка задачи, предвидение идеального конечного результата, отыскание противоречия, мешающего достижению цели, открытие причины противоречия и, наконец, разрешение противоречия.
Сила творческого воображения позволяет человеку взглянуть на примелькавшиеся вещи новыми глазами и различить в них черты, доселе никем не замеченные. Существенное значение в воспитании творческого воображения играет искусство.
В процессе научного открытия большую роль играет интуиция – способность постижения истины путем прямого ее усмотрения без обоснования с помощью доказательства. Многие ученые и художники считают, что самыми плодотворными в их творческом процессе являются моменты приливов вдохновения. После каких-то, может быть, очень долгих и мучительных исканий вдруг наступает удивительное чувство творческого порыва и ясности сознания. В этот момент человек работает быстро и сам чувствует, что делает хорошо, именно так, как нужно, как ему хотелось. Понятие интуиции сближает научное творчество с художественным.
Характерная черта научного мышления – доказательность. Истинность или ложность того или иного утверждения, как правило, не обладает прозрачной очевидностью. Во всяком доказательстве имеются: тезис, основания доказательства (аргументы) и способ доказательства. Тезисом называется положение, истинность или ложность которого выясняется посредством доказательства. Доказательство, посредством которого выясняется ложность, называется опровержением.
Все положения, на которые опирается доказательство и из которых необходимо следует истинность доказываемого тезиса, называются основаниями или аргументами. Основания состоят из положений о достоверных фактах, определений, аксиом и ранее доказанных положений.
Аксиомы – положения, не доказываемые в данной науке и играющие в ней роль допускаемых оснований доказываемых истин.
Связь оснований и выводов из них, имеющая результатом необходимое признание истинности доказываемого тезиса, называется способом доказательства. Доказательство одного и того же положения науки может быть различным. Связь оснований, ведущая к истинности доказательного тезиса, не единственная.
Рассмотренные методы и последовательное их применение позволили создать совершенную методологию научного исследования и решить основную задачу естественно-научного познания – правильно отражать объективную действительность в сознании человека, т.е. отражать ее такой, какая она существует сама по себе, независимо от человеческого сознания.
Между явлениями природы существуют устойчивые, повторяющиеся связи – проявления законов природы.
В системе научного знания большое значение имеют теории. Теории дают представление о закономерностях и существующих связях в определенной области.
Теория – это обобщение, логически объясняющее определенный набор фактов.
Теория сама по себе – не факт, так как недоступна для непосредственного наблюдения. Тем не менее, ее можно проверить и в зависимости от результатов признать или отклонить.
Главное отличие теории от гипотезы – ее достоверность, доказанность. Естественно-научная теория дает объяснение целой области природных явлений с единой точки зрения. Квинтэссенцией теории являются законы, устанавливающие количественные связи и соотношения между различными наблюдаемыми в опыте величинами.
Нужно различать законы природы и законы науки. Первые проявляются в особенностях протекания природных явлений и процессов и во взаимосвязи некоторых величин. Они неизменны и всегда выполняются.
Научные законы – это попытка описать законы природы на языке математических формул или других точных формулировок.
Однако для понимания специфики теории как формы знания важно учитывать, что все теории оперируют не реальными объектами, а их идеальными моделями, которые неизбежно абстрагируются от каких-то реальных сторон объектов и поэтому всегда дают неполную картину действительности.
Главные элементы теории – ее принципы и законы. Принципы – наиболее общие и важные фундаментальные положения теории. Как обобщающий результат предыдущего познания в данной теории, принципы всесторонне раскрываются и обосновываются. При построении теории принципы играют роль исходных, основных и первичных посылок, закладываемых в фундамент теории. Законы конкретизируют принципы, раскрывают взаимосвязь вытекающих из них следствий. Раскрывая сущность объектов, законы их существования, взаимодействия, изменения и развития, теория позволяет объяснить явления, предсказывать новые, еще неизвестные факты и характеризующие их закономерности, прогнозировать закономерное поведение изучаемой системы в будущем.
Таким образом, теория выполняет две важнейшие функции: объяснения и предсказания, научного предвидения. Теория – одна из наиболее устойчивых форм научного знания. Такая стабильность обеспечивается и ее системностью, и в большей или меньшей степени ее общим характером. Чем более общим является знание, тем оно устойчивее.
Переход к новому принципу – по существу, переход к новой теории. При этом новая теория должна обязательно удовлетворять принципу соответствия, сформулированному Н. Бором. Согласно этому принципу каждая правильная новая, более общая теория должна не отвергать устоявшуюся, предшествующую ей менее общую теорию, а сводиться к ней в тех условиях, при которых она была получена. Так, например, более общая специальная теория относительности не отвергает классическую механику, а сводится к ней при скоростях, много меньших скорости света.
Все теоретическое знание выражается не в одной теории, а в совокупности множества теорий. Изменения в наиболее общих теориях приводят к качественным изменениям всей системы теоретического знания, в результате чего происходит научная революция. Известные научные революции связаны с именами Н. Коперника, И. Ньютона, А. Эйнштейна.
Контрольные вопросы
В чем состоит взаимосвязь между естественно-научными и гуманитарными знаниями?
Какова специфика естественно-научной и гуманитарной форм культур?
В чем проблема «двух форм культур»?
Каков предмет современного естествознания?
Каковы аксиологические и гносеологические проблемы естествознания?
Каковы важнейшие составляющие современной естественно-научной картины мира.
Какова последовательность развития научного знания?
Каковы уровни научного познания природы?
Какие методы научного познания относятся к числу общенаучных методов?
10. Что такое инновационная культура?
2. ФИЗИЧЕСКИЕ КОНЦЕПЦИИ ОПИСАНИЯ ПРИРОДЫ
2.1. Корпускулярная и континуальная концепции
описания природы
2.1.1. Концепции строения материи и развития материального мира
Как известно, первый период становления естествознания относится к VII–IV вв. до н.э. и связан с греческой натурфилософией. В течение этого периода вырабатываются общие точки зрения на окружающий мир, ставятся вопросы о природе материи и духа, законах развития материального мира, о природе пространства и времени, движения и света.
Возникают также такие натурфилософские концепции, как атомистика Левкиппа–Демокрита и натурфилософия Аристотеля.
Демокрит и Аристотель, по сути, обобщили античную натурфилософию и сформулировали две принципиально различные концепции взглядов на строение материи и развитие материального мира: так называемые корпускулярную (Демокрит) и континуальную (Аристотель) концепции описания природы.
По Демокриту, материя состоит из вещества; вещество состоит из атомов-корпускул и пустоты; атомы находятся в постоянном движении; атомы вечны, неизменны, неделимы и отличаются друг от друга лишь величиной и формой.
Демокрит считал, что движение присуще материи. Звук, теплота, свет – это субстанции, которые излучаются телами в виде частиц-корпускул.
По Аристотелю, мир материален, но объективно существуют конкретные вещи (предметы), а материя – некая субстанция, из которой при определенных условиях могут возникнуть те или иные предметы. Реальные тела можно дробить непрерывно, до бесконечности.
Синонимом непрерывности является континуальность. По Аристотелю, материя непрерывна (континуальна) и «природа не терпит пустоты».
Следует также отметить, что он первым стал рассматривать механическое движение тел в пространстве и во времени, а свет, например, представлял как движение в виде волн через некую среду – эфир.
Две выдвинутые концепции на природу материи, по существу, определили всю дальнейшую историю развития естествознания более чем на двухтысячелетний период, вплоть до XX в.
Развивая свою концепцию, Аристотель конкретизировал механизмы образования различных веществ. Он считал, что в основе материальных вещей лежит непрерьщная первоматерия, ее количество в природе неизменно. Первоматерии присущи четыре основных качества: тепло и холод, сухость и влажность. Разнообразие веществ зависит от сочетания этих качеств в различных пропорциях. Комбинируя качества попарно, Аристотель приходит к четырем элементам – земле, воде, огню и воздуху. Взгляды Аристотеля оказали большое влияние на развитие естествознания на более чем тысячелетний период и в дальнейшем получили своеобразное развитие в алхимии.
Напротив, учение Демокрита далеко опередило взгляды современников и вначале не получило понимания. Только впоследствии, в результате развития научного естествознания, оно через много веков было признано.
К XVII в. стало ясно, что главные цели алхимии — получение золота и «философского камня» – оказались недостижимыми и что существует некоторый предел возможных взаимопревращений веществ.
Постепенно наука начинает освобождаться от влияния учения Аристотеля, и возрождается античный атомизм Демокрита. Особенно важную роль при этом сыграли труды французского мыслителя П. Гассенди. Он возрождает представления о том, что материя состоит из постоянно движущихся атомов и пустоты, которая является условием возможности движения атомов. Развитие и конкретное приложение идей атомизма осуществил английский физик и химик Р. Бойль.
Однако потребовалось еще около ста лет, чтобы ученые окончательно избавились от аристотелева представления о строении вещества, и вышли на путь атомистического понимания явлений природы.
Затем на рубеже XVIII–XIX вв. был открыт целый ряд новых важнейших законов химии, которые полностью утвердили атомно-молекулярную концепцию строения вещества. Среди них закон постоянства состава (закон Пруста), закон кратных отношений (Д. Дальтон), закон простых объемных отношений (Ж.Л. Гей-Люссак) и закон Авогадро. К середине XIX в. атомно-молекулярный взгляд на природу материи получил полное признание. Таким образом, был подведен итог развитию представлений того времени о природе вещества.
2.1.2. Развитие представлений о природе света.
Корпускулярно-волновой дуализм
По-иному шла история развития представлений о природе света и оптических явлениях. Напомним, что Аристотель считал, что свет – это движение волн, распространяющихся в некоторой непрерывной среде – эфире. Однако в дальнейшем И. Ньютон, бывший, как и большинство, ученых того времени, сторонником атом-но-корпускулярной концепции строения вещества, считал, что свет представляет собой поток частиц-корпускул, движущихся прямолинейно. Такая точка зрения, в частности, хорошо объясняла законы геометрической оптики. Однако при изучении других оптических явлений накапливались факты о таких процессах, как интерференция, дифракция, поляризация, дисперсия света, которые, напротив, легко было объяснить, исходя из того, что свет – волновое движение через некоторое необычное вещество – эфир.
Во второй половине XIX в. точку в вопросе о природе света поставил Дж. Максвелл, который, создав теорию электромагнетизма, доказал, что свет представляет собой электромагнитное поле, распространяющееся в виде волн. То есть была открыта новая материальная субстанция – поле, свойства и законы движения которой в соответствии с развитой Дж. Максвеллом электродинамикой соответствовали в большей мере континуальной, непрерывной концепции Аристотеля.
Таким образом, к концу XIX в. сложилась следующая ситуация и изучении природы материи. Оказалось, что материя предстает в виде двух форм – вещественной и полевой с существенно разными свойствами, при этом вещественная форма материи находит объяснение в рамках корпускулярной, а полевая – напротив, в рамках континуальной концепции.
Начало XX в. ознаменовалось столькими неожиданными открытиями в изучении вещества и поля, полностью изменившими представления о природе материи. Вначале это относилось к световым, электромагнитным явлениям, в частности, к излучению абсолютно черного тела и фотоэффекту. Как известно, для объяснения излучения абсолютно черного тела М. Планку в 1900 г. и фотоэффекта Л. Эйнштейну в 1905 г. пришлось принять, что свет в ряде случаев ведет себя как поток отдельных частиц – фотонов (корпускул), а не как волна.
Таким образом, при рассмотрении электромагнитного поля возникло представление о корпускулярно-волновом дуализме. Причем при больших длинах волн электромагнитного излучения в большей мере проявляются непрерывные (континуальные) волновые свойства света, а при малых (рентгеновские и γ –лучи) – дискретные (корпускулярные), квантовые свойства.
Так физика начала XX в. открыла диалектическое единство двух классических противоположностей – частиц и волн
После установления такого удивительного факта французский физик Луи де Бройль, опираясь на законы симметрии в природе в 1923 г. выдвинул совершенно радикальную идею – идею распространения принципа корпускулярно-волнового дуализма света на все вещественные частицы микромира, имеющие массу покоя, – электроны, протоны и т.д. Таким образом, де Бройль предположил, что любые частицы вещественной материи наряду с корпускулярными (массой, импульсом, энергией) обладают также волновыми свойствами (частотой и длиной волны X). Причем так же, как и для фотонов, энергия (Е) и импульс (р) частиц вычисляются по формулам
Е = hω , p = h/ λ .
Откуда для так называемой длины волны де Бройля было получено выражение λ = h/p .
Вскоре гипотеза де Бройля нашла замечательное экспериментальное подтверждение. К. Дэвиссон и Л. Джермер открыли дифракцию электронов на кристаллах, т.е. доказали существование волновых свойств у частиц – электронов. А в дальнейшем дифракционные (волновые) явления были обнаружены и у других атомных частиц. Оказалось, что наличие волновых свойств у микрочастиц-корпускул – это универсальное явление, общее свойство материи.
Наконец, созданные в 20-е гг. XX в. новые фундаментальные квантовые теории микромира–квантовая механика и квантовая теория поля (квантовая электродинамика) – показали, что корпускулярно-волновой дуализм в микромире отражает глубинную взаимосвязь материальных субстанций — вещества и полей и, в конечном счете, свидетельствует о единстве материи, проявляясь во взаимодействии частиц и полей таким образом, что кванты полей при взаимодействии с веществом могут исчезать, образуя пары вещественных частиц (электрон–позитрон, протон–антипротон), точно так же, как и вещественные частицы, в результате аннигиляции могут превращаться в кванты полей.
Таким образом, сформулированные еще древними греками две концепции взглядов на природу материи, несмотря на кажущиеся противоречия между ними, обе оказались справедливыми, но только отражающими две разные стороны единой материи.
Гипотеза о волновом характере движения микрочастиц впервые была выдвинута Луи де Бройлем в 1924г. Для доказательства их волновой природы в 1925 г. немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов. А в 1927г. К Дэвинсон вместе со своим сотрудником Л.Джермером открыл явление дифракции электронов на кристалле никеля Независимо от него Дж. П. Томсон открыл явление дифракции электронов при прохождении через металлическую фольгу. Таким образом, идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. В 1937г. К Девинсон и Дж. П. Томсон были удостоены Нобелевской премии по физике.
Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.
Микрочастицами называют элементарные частицы (электроны, протоны, нейтроны, фотоны и др.), а также сложные частицы, образованные из сравнительно небольшого числа элементарных частиц (ядра, атомы).
Микрочастица с энергией Е = mс2 и импульсом р = mv ведет себя подобно волне с частотой v = E/h и длиной волны λ= h/p, где h – постоянная Планка (h = 6,626 • 10-34 Дж/Гц) Например, если направить на преграду с двумя узкими щелями (порядка длины волны λ.) пучок микрочастиц (например, электронов) обладающих одинаковой кинетической энергией
В развитие идей о волновых свойствах вещества Э Шредингер в 1926 г. получил свое знаменитое уравнение. Шредингер сопоставил движению микрочастицы комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил греческой буквой «пси» (ψ). Она характеризует состояние микрочастицы.Интерпретацию ψ – функции дал М. Борн в 1926г. Согласно Борну, квадрат модуля пси-функции в пределах некоторого объема определяет вероятность того, что частица будет обнаружена в пределах этого объема. Например, форма электронных облаков в атомах определяется ψ – функцией электронов. Таким образом, состояние микрообъекта описывается статистически и волновая функция содержит всю информацию о корпускулярных и волновых его свойствах. Вид функции получается из решения уравнения Шредингера, которое является основным уравнением нерелятивистской квантовой механики. Оно не может быть выведено из других соотношений Его следует рассматривать как исходное предположение, справедливость которого доказывается тем, что все, вытекающие из него следствия, самым точным образом согласуются с опытными фактами. Уравнение Шредингера описывает взаимодействие электронов с ядрами атомов, описывает форму электронных оболочек атомов и ионов, химическую связь и строение молекул.
Волновая природа частиц отражается и в соотношениях неопределенностей, полученных в 1927 г. Гейзенбергом – ∆х∆р≥h/2, ∆E∆t≥h/2, где ∆х – неопределенность координат, ∆р – неопределенность импульса, ∆Е – неопределенность энергии и ∆t – неопределенность времени.
2.2. Порядок и беспорядок в природе, детерминированный хаос
Обращая внимание на существующий порядок в природе, мы часто в качестве примера указываем на кристаллы, в кристаллической решетке которых строго чередуются ионы вещества (например, Na+ и Сl– в поваренной соли). Строго упорядоченную структуру имеют и кристаллические металлы. В узлах кристаллической решетки меди располагаются положительно заряженные ионы.
Однако наряду с существующим порядком в природе часто соседствует и беспорядок (хаос). В тех же кристаллах металлов, наряду с упорядоченной ионной решеткой, имеются свободные электроны, которые беспорядочно и хаотично движутся.
Порядок и беспорядок наблюдаются, например, и в космосе. С одной стороны, мы знаем, что планеты движутся по определенным орбитам со строго определенной скоростью. А с другой стороны, в космосе, помимо планет, имеется межзвездное вещество, которое хаотически движется в пространстве, и там, где образуются большие скопления этого вещества, возникают значительные гравитационные силы, в результате чего могут образоваться звездные системы с высокой степенью упорядоченности.
Последний пример указывает на существование процессов и механизмов, ведущих от беспорядка к порядку. Эта особенность подмечена еще в древнегреческой мифологии, где под хаосом понималась «беспредельная, первобытная материя», из которой образовалось все существующее.
Можно привести еще больше примеров перехода от порядка, упорядоченности к хаосу. Так, если нагревать кристаллы поваренной соли, то амплитуда колебаний атомов увеличивается, связь между атомами уменьшается, упорядоченная структура кристалла разрушается и исчезает, а атомы начинают хаотически двигаться. Приведенный пример иллюстрирует процессы, связанные с действием одного из фундаментальных законов природы, имеющего универсальный характер, а именно: со вторым началом (законом) термодинамики.
Суть этого закона заключается в том, что во всех тепловых процессах, связанных с выделением тепла в результате трения, прохождения электрического тока и, как следствие, с выделением тепла при горении, экзотермических химических реакциях и т.д., тепло в естественных условиях всегда переходит от более горячего тела к более холодному, но не наоборот.
Имеется несколько формулировок данного закона. Одна из формулировок, принадлежащая создателю классической термодинамики Э. Клаузиусу, гласит: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым.
Другая формулировка связана с понятием энтропии – одной из термодинамических функций, определяющих направление протекания тепловых процессов. В процессах теплопередачи изменение энтропии (ΔS) определяется как ΔS = ΔQ/T , где ΔQ – количество переданного тепла, а Т – абсолютная температура.
Поскольку тепло всегда передается от теплого тела к холодному, то изменение количества тепла ΔQ – величина положительная, а следовательно, и изменение энтропии ΔS есть величина положительная, т.е. энтропия в таких процессах возрастает.
Этот закон носит всеобщий характер и формулируется следующим образом: в замкнутых системах (без притока энергии извне) процессы протекают таким образом, что энтропия системы возрастает.
Таким образом, второе начало термодинамики устанавливает наличие в природе фундаментальной асимметрии, т.е. однонаправленности всех самопроизвольно протекающих процессов.
И хотя количество энергии в замкнутых системах сохраняется, распределение энергии меняется необратимым образом – происходит деградация форм энергии с постепенным переходом всех форм энергии в тепловую. Иными словами, в замкнутых системах самопроизвольно осуществляется необратимый процесс перехода от более упорядоченных структур к менее упорядоченным, или к хаосу.
А поскольку в таких процессах энтропия систем возрастает, то ее принято характеризовать как меру хаоса.
Таким образом, из второго закона термодинамики вытекает, что в природе возможно только одно напраатение процессов – от порядка к беспорядку, хаосу.
Однако такой вывод противоречит многим фактам. Известны процессы развития от неупорядоченности, хаоса к порядку, перехода от структур, имеющих более низкую организацию, к структурам с более высокой организацией.
Примером может служить эволюционное развитие живых организмов от примитивных форм к высокоорганизованным. Долгое время противоречие между вторым законом термодинамики и эволюционной теорией поступательного развития живой природы Дарвина не находило разрешения. Однако сейчас объяснение такому противоречию найдено.
Дело в том, что второй закон термодинамики рассматривает процессы только в замкнутых системах, в то время как живые системы являются открытыми, т.е. обмениваются энергией и веществом с внешней средой. В открытых системах энтропия может, как возрастать, так и уменьшаться, тогда как в целом для открытых систем в совокупности с внешней средой обитания второй закон термодинамики справедлив. Таким образом, в открытой системе энтропия может уменьшаться за счет увеличения энтропии во внешней среде.
В результате при определенных неравновесных условиях в системе за счет внутренних перестроек могут возникнуть упорядоченные структуры. Эту особенность системы называют самоорганизацией, а сами структуры, возникающие в диссипативных (рассеивающих энергию) системах при неравновесных необратимых процессах, – диссипативными (по терминологии Пригожина). Под действием флуктуации возникают коллективные формы движения и новые структуры более высокой организации.
2.3. Структурные уровни организации материи
В настоящее время принято единую Природу для удобства делить на три структурных уровня – микро-, макро- и мегамир. Естественными, хотя отчасти и субъективными, признаками деления являются размеры и массы исследуемых объектов.
Микромир – мир предельно малых, непосредственно не наблюдаемых микросистем с характерным размером от 10–8 см и менее (атомы, атомные ядра, элементарные частицы).
Макромир – мир макротел, начиная от макромолекул (размеры от 10–6 см и выше) до объектов, размерность которых соотносима с масштабами непосредственного человеческого опыта – миллиметры, сантиметры, километры, вплоть до размеров Земли (длина экватора Земли равна ~ 109 см).
Мегамир – мир объектов космического масштаба от 109 см до 1028 см. Этот диапазон включает размеры Земли, Солнечной системы, Галактики, Метагалактики.
Хотя микро–, макро– и мегамир тесно взаимосвязаны и составляют единое целое, тем не менее на каждом из этих структурных уровней действуют свои специфические законы: в микромире – законы квантовой физики, в макромире – законы классического естествознания, прежде всего классической физики: механики, термодинамики, электродинамики. Законы мегамира основаны в первую очередь на общей теории относительности.
2.3.1. Микромир
Атомная физика. Еще древние греки Левкипп и Демокрит выдвинули гениальную догадку, что вещество состоит из мельчайших частиц – атомов.
Научные основы атомно-молекулярного учения были заложены гораздо позднее в работах русского ученого М.В. Ломоносова, французских химиков Л. Лавуазье и Ж. Пруста, английского химика Дж. Дальтона, итальянского физика А. Авогадро и других исследователей.
Периодический закон Д.И. Менделеева показал существование закономерной связи между всеми химическими элементами. Стало ясно, что в основе всех атомов лежит нечто общее. До конца XIX в. в химии царило убеждение, что атом есть наименьшая неделимая частица простого вещества. Считалось, что при всех химических превращениях разрушаются и создаются только молекулы, атомы же остаются неизменными и не могут дробиться на части. И, наконец, в конце XIX в. были сделаны открытия, показавшие сложность строения атома и возможность превращения одних атомов в другие.
Первыми на сложную структуру атома указали немецкие ученые Г.Р. Кирхгоф и Р.В. Бунзен, изучая спектры испускания и поглощения различных веществ. Сложную структуру атома подтверждали также опыты по изучению ионизации, открытие и исследование так называемых катодных лучей и явления радиоактивности.
Г.Р. Кирхгоф и Р.В. Бунзен обнаружили, что каждому химическому элементу соответствует характерный, присущий только ему набор спектральных линий в спектрах испускания и поглощения. Это означало, что свет испускается и поглощается отдельными атомами, а атом, в свою очередь, представляет собой сложную систему, способную взаимодействовать с электромагнитным полем.
Об этом же свидетельствовало явление ионизации атомов, обнаруженное при исследованиях электролиза и газового разряда. Данное явление можно было объяснить, лишь предположив, что атом в процессе ионизации теряет часть своих зарядов или приобретает новые.
Свидетельством сложной структуры атома явились опыты по изучению катодных лучей, возникающих при электрическом разряде в сильно разреженных газах. Для наблюдения этих лучей из стеклянной трубки, в которую впаяны два металлических электрода, выкачивается, по возможности, весь воздух, а затем сквозь нее пропускается ток высокого напряжения. При таких условиях от катода трубки перпендикулярно к его поверхности распространяются «невидимые» катодные лучи, вызывающие яркое зеленое свечение в том месте, куда они попадают. Катодные лучи обладают способностью приводить в движение легко подвижные тела и отклоняться от своего первоначального пути в магнитном и электрическом полях.
Изучение свойств катодных лучей привело к заключению, что они состоят из мельчайших частиц, несущих отрицательный заряд. Позже удалось определить массу и величину их заряда. Оказалось, что масса частиц и величина их заряда не зависят ни от природы газа, остающегося в трубке, ни от вещества, из которого сделаны электроды, ни от прочих условий опыта. Кроме того, катодные частицы известны только в заряженном состоянии и не могут существовать без своих зарядов, не могут быть превращены в электронейтральные частицы: электрический заряд составляет самую сущность их природы. Эти частицы получили название электронов.
В катодных трубках электроны отделяются от катода под влиянием электрического поля. Но они могут возникать и вне всякой связи с электрическим полем. Так, например, при электронной эмиссии металлы испускают электроны, при фотоэффекте многие вещества также выбрасывают электроны. Выделение электронов самыми разнообразными веществами указывало на то, что эти частицы входят в состав всех без исключения атомов. Это позволило сделать вывод, что атомы являются сложными образованиями, построенными из более мелких составных частей.
В 1896 г., изучая люминесценцию различных веществ, А.А. Беккерель случайно обнаружил, что соли урана, излучают без предварительного их освещения. Это излучение, обладающее большой проникающей способностью и воздействующее на фотографическую пластинку, завернутую в черную бумагу, было названо радиоактивным излучением. Позднее было установлено, что оно состоит из тяжелых положительно заряженных α-частиц, легких отрицательных β-частиц (электронов) и электрически нейтрального γ-излучения.
Открытие электрона можно считать началом рождения атомной физики, обусловившим попытки построения моделей атома. Поскольку электрон имеет отрицательный заряд, а атом в целом устойчив и электронейтрален, то естественно было предположить наличие в атоме положительно заряженных частиц.
Первые модели атома на основе представлений классической механики и электродинамики появились в 1904 г.: автором одной из них стал японский физик Хантаро Нагаока, другая принадлежала английскому физику Дж. Томсону – автору открытия электрона.
X. Нагаока представил строение атома аналогичным строению Солнечной системы: роль Солнца играет положительно заряженная центральная часть атома, вокруг которой по установленным кольцеобразным орбитам движутся «планеты» – электроны. При незначительных смещениях электроны возбуждают электромагнитные волны.
В модели атома Дж. Томсона положительное электричество «распределено» по сфере, в которую вкраплены электроны. В простейшем атоме водорода электрон находится в центре положительно заряженной сферы. В многоэлектронных атомах электроны располагаются по устойчивым конфигурациям, рассчитанным Дж. Томсоном. Томсон считал, что каждая конфигурация определяет те или иные химические свойства атомов. Он предпринял попытку теоретически объяснить периодическую систему элементов Д. И. Менделеева.
Но вскоре оказалось, что новые опытные факты опровергают модель Томсона и, наоборот, свидетельствуют в пользу планетарной модели. Эти факты были установлены Э. Резерфордом в 1912 г. В первую очередь следует отметить открытие им атомного ядра. Для выявления структуры атома Резерфорд производил зондирование атома с помощью α–частиц, которые возникают при распаде радия и некоторых других радиоактивных элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона.
В опытах Резерфорда пучок α–частиц падал на тонкую фольгу из исследуемого материала (золото, медь и др.). После прохождения фольги α–частицы попадали на экран, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось сцинтилляцией (вспышкой света), которую можно было наблюдать. В отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных пучком частиц. Но когда на пути пучка помещали фольгу, то вопреки ожиданиям α–частицы испытывали очень малое рассеяние на атомах фольги и распределялись на экране внутри круга чуть большей площади.
Совершенно неожиданным также оказалось, что небольшое число α–частиц (примерно одна из двадцати тысяч) отклонялись на углы больше 90°, т.е. практически возвращались назад. Резерфорд понял, что положительно заряженная α–частица могла быть отброшена назад лишь в том случае, если в атомах мишени положительный заряд атома и его масса сконцентрированы в очень малой области пространства. Так Резерфорд пришел к идее атомного ядра – тела малых размеров, в котором сконцентрированы почти вся масса и весь положительный заряд атома.
Подсчитывая число α–частиц, рассеянных на большие углы, Резерфорд смог оценить размеры ядра. Оказалось, что ядро имеет диаметр порядка
10–12–10–13 см (у разных ядер). Размер же самого атома составляет примерно 10–8 см, т.е. в 10 – 100 тысяч раз превышает размеры ядра. Впоследствии удалось точно определить и заряд ядра. Если принять заряд электрона за единицу, то заряд ядра оказался в точности равен номеру данного химического элемента в периодической системе элементов Д.И. Менделеева.
Из опытов Резерфорда непосредственно вытекала планетарная модель атома с положительно заряженным атомным ядром. Учитывая, что в целом атом должен быть электронейтральным, следовало заключить, что число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Очевидно также, что находиться в покое электроны внутри атома не могут, так как они вследствие притяжения положительным ядром упали бы на него. Следовательно, они должны двигаться вокруг ядра подобно планетам вокруг Солнца. Такой характер движения электронов определяется действием электрических кулоновских сил со стороны ядра.
В атоме водорода вокруг ядра обращается всего лишь один электрон. Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу примерно в 1836 раз большую массы электрона. Это ядро было названо Резерфордом протоном и стало рассматриваться как элементарная частица.
Размер атома определяется радиусом орбиты движения его электронов. Достаточно наглядная планетарная модель атома, как уже говорилось, является прямым следствием экспериментальных результатов Резерфорда по рассеянию α-частиц на атомах вещества.
Однако вскоре выяснилось, что такая простая модель противоречит законам электродинамики, из которых следует, что модель атома Резерфорда является неустойчивой системой и длительное время атом указанной конструкции существовать не может. Дело в том, что движение электронов по круговым орбитам происходит с ускорением, а ускоренно движущийся заряд, согласно законам электродинамики Максвелла, должен излучать электромагнитные волны (ω – частотой, равной частоте его обращения вокруг ядра). Излучение сопровождается потерей энергии. Теряя энергию, электроны должны приближаться к ядру, подобно тому, как спутник приближается к Земле при торможении в верхних слоях атмосферы.
В действительности, однако, этого не происходит. Атомы устойчивы, могут существовать неограниченно долго, совершенно не излучая электромагнитные волны.
Выход из создавшегося положения нашел датский ученый Н. Бор. Он сделал радикальный вывод о том, что законы классической механики и электродинамики вообще не применимы в микромире и, в частности, в атоме. Тем не менее, чтобы сохранить планетарную модель атома Резерфорда, он сформулировал два постулата (постулаты Бора), идущие вразрез и с классической механикой, и с классической электродинамикой. Эти постулаты заложили основы принципиально новых теорий микромира – квантовой механики и квантовой электродинамики (квантовой теории электромагнитного поля). Обосновывая свои постулаты, Бор опирался на идею существования квантов электромагнитного поля, выдвинутую в 1900 г. М. Планком и развитую затем А. Эйнштейном (для объяснения фотоэффекта).
Постулаты Бора заключаются в следующем: электрон может двигаться вокруг ядра не по любым орбитам, а только по таким, которые удовлетворяют определенными условиям, вытекающим из теории квантов. Эти орбиты получили название устойчивых, или квантовых, орбит. Когда электрон движется по одной из возможных для него устойчивых орбит, то он не излучает. Переход электрона с удаленной орбиты на более близкую орбиту сопровождается потерей энергии.
Потерянная атомом при каждом переходе энергия превращается в один квант лучистой энергии. Частота излучаемого при этом света определяется радиусами тех двух орбит, между которыми совершается переход электрона. Чем больше расстояние от орбиты, на которой находится электрон, до орбиты, на которую он переходит, тем больше частота излучения.
Простейшим из атомов является атом водорода: вокруг ядра вращается только один электрон. Исходя из приведенных постулатов Бор рассчитал радиусы возможных орбит для этого электрона и нашел, что они относятся, как квадраты натуральных чисел: 1:2: : 3 : ... : п. Величина п получила название главного квантового числа. Радиус ближайшей к ядру орбиты в атоме водорода равняется 0,53 ангстрема. Вычисленные отсюда частоты излучений, сопровождающих переходы электрона с одной орбиты на другую, оказались точности совпадающими с частотами, найденными опытным путем для линий водородного спектра. Тем самым была доказана правильность расчета устойчивых (стационарных) орбит для атома водорода, вместе с тем и приложимость постулатов Бора для таких расчетов.
В дальнейшем теория Бора была распространена и на атомную структуру других элементов. Однако распространение теории на многоэлектронные атомы и молекулы столкнулось с трудностями. Чем подробнее теоретики пытались описать движение электронов в многоэлектронном атоме, определить их орбиты, тем большими были расхождения результатов с экспериментальными данными. В ходе развития квантовой теории стало ясно, что эти расхождения носят принципиальный характер и связаны с так называемыми волновыми свойствами электрона.
Дело в том, что в 1924 г. Луи де Бройль распространил известный к тому времени корпускулярно-волновой дуализм электромагнитного поля на вещественные частицы микромира (атомы, электроны, протоны и т.д.). Напомним, что согласно его идее частицы, имеющие массу, заряд и т.д., также обладают и волновыми свойствами. При этом длина волны де Бройля (λ) связана с импульсом частиц р и равна
λ = h/р, где h – постоянная Планка.
Идея де Бройля нашла блестящее подтверждение в опытах К. Дэвиссона и Л. Джермера (1927), в которых наблюдалось явление дифракции электронов – классический пример волнового явления.
Развивая волновые идеи частиц микромира, Э. Шрёдингер создал математическую волновую модель атома в виде знаменитого сейчас волнового дифференциального уравнения Шрёдингера:
Анализ волнового уравнения Шрёдингера показал, что с его помощью можно определить все возможные дискретные энергии Еп в атоме. Кроме того, было выяснено, что волновая функция не позволяет абсолютно точно определить положение электронов в атомах, они расплываются в некое «облако»; таким образом, можно говорить лишь о вероятности нахождения электронов в том или ином месте атома, которая характеризуется квадратом амплитуды волны.
Учитывая законы квантовой волновой механики, становится ясно, почему оказалось невозможным точно описать структуру атома на основе представлений о боровских орбитах электронов в атоме. Таких, точно локализованных орбит в атомах просто не существует, а хорошее согласование расчета орбит электронов в атоме водорода, в соответствии с теорией Бора и экспериментальными данными связано с тем, что только для атома водорода электронные орбиты Бора хорошо совпали с кривыми средней плотности зарядов, вычисленных в соответствии с квантовой теорией Шрёдингера. Для многоэлектронных атомов такого совпадения не наблюдается.
В настоящее время на основе квантовой механики, а также квантовой электродинамики – квантовой теории электромагнитного поля, разработанной в 1927 г. П.А. Дираком, удалось объяснить многие особенности поведения многоэлектронных атомно-молекулярных систем. В частности, удалось разрешить важнейший вопрос о структуре атомов различных элементов и установить зависимость свойств элементов от строения электронных оболочек им атомов. В настоящее время разработаны схемы строения атомов всех химических элементов, которые позволяют объяснить многие физические и химические свойства элементов.
Напомним, что число электронов, вращающихся вокруг ядра атома, соответствует порядковому номеру элемента в периодической системе Д.И. Менделеева. Электроны расположены послойно. Каждому слою принадлежит определенное заполняющее или как бы насыщающее его число электронов. Электроны одного и того же слоя характеризуются близкими значениями энергии, т.е. находятся примерно на одинаковом энергетическом уровне. Вся оболочка атома распадается на несколько энергетических уровней (n). Электроны каждого последующего слоя находятся на более высоком энергетическом уровне, чем электроны предыдущего слоя. Максимальное число электронов (N), могущих находиться на данном энергетическом уровне (n), определяется по формуле N = 2n2, т.е. на первом уровне (n=1) может находиться два электрона, на втором (п = 2) – восемь электронов, на третьем (n= 3) – восемнадцать.
Электроны наружного слоя, как наиболее удаленные от ядра и, следовательно, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся заряженными положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие электроны, становятся заряженными отрицательно. Образующиеся заряженные частицы называются ионами. Многие ионы, в свою очередь, могут терять или присоединять электроны, превращаясь при этом в электронейтральные атомы или новые ионы с иным зарядом.
Подводя итог рассмотрению основных результатов квантово-механических подходов к строению и структуре атомов, отметим следующее. Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами – n, l, т, s:
n – главное квантовое число, характеризует энергию электрона на соответствующей орбите (n);
l – орбитальное квантовое число, характеризует форму орбиты (электронного облака) и может изменяться в атоме от 0 до n = 1;
т – магнитное квантовое число, характеризует ориентацию орбит (электронных облаков) в пространстве и может принимать значения от +1 до –1;
s – спиновое квантовое число, характеризует вращение электрона вокруг собственной оси и может принимать только два значения: s = ±1/2.
Согласно одному из важнейших принципов квантовой механики – принципу Паули, в атоме не может быть электронов, у которых все четыре квантовых числа одинаковы. В рамках квантовой механики получили полное объяснение, как структура атомов, так и изменение свойств химических элементов в периодической системе Д.И. Менделеева.
Плодотворным оказалось также применение квантовой механики к физическим полям. Была построена квантовая теория электромагнитного поля – квантовая электродинамика, вскрывшая целый ряд фундаментальных законов микромира. Среди них важнейшие законы взаимного превращения двух видов материальных субстанций – вещественной и полевой материи – друг в друга.
Свое место в ряду элементарных частиц занял фотон – частица электромагнитного поля, не имеющая массы покоя. Синтез квантовой механики и специальной теории относительности привел к предсказанию существования античастиц. Оказалось, что у каждой частицы должен быть как бы свой «двойник» – другая частица с той же массой, но противоположным электрическим или каким-либо другим зарядом. Английский физик П.А. Дирак – основатель релятивистской к пантовой теории поля – предсказал существование позитрона и возможность превращения фотона в пару электрон-позитрон и обратно. Позитрон – античастица электрона – экспериментально был открыт и 1934 г. К.Д. Андерсоном в космических лучах.
Ядерная физика. По современным представлениям, атомные ядра элементов состоят из протонов и нейтронов. Первые указания на то, что и состав ядер входят протоны (ядра атомов водорода) были получены Резерфордом в 1919 г. в результате его нового (после открытия строения атома) сенсационного открытия – расщепления атомного ядра под действием α-частиц и получения новых химических элементов в результате первой искусственной ядерной реакции.
В одном из вариантов своих опытов с использованием камеры Вильсона, наполненной азотом, внутри которой имелся радиоактивный источник излучения, Резерфордом были получены фотографии треков α-частиц, на конце которых имелось характерное разветвление – «вилка». Одна из сторон «вилки» давала короткий трек, а другая – длинный. Длинный трек имел такие же особенности, как и треки, наблюдаемые ранее Резерфордом при бомбардировке α-частицами атомов водорода
Так впервые была высказана мысль, что ядра водорода представляют собой составную часть ядер других атомов. Впоследствии Резерфорд для этой составной части ядра предложил термин «протон».
Схема реакции Резерфорда может быть представлена следующим образом: α–частица попадает в атомное ядро азота и поглощается им. Образующееся при этом промежуточное ядро изотопа фтора оказывается неустойчивым: оно выбрасывает из себя один протон, превращаясь в ядро изотопа кислорода .
В 1932 г. Д.Д. Иваненко опубликовал заметку, в которой высказал предположение, что наряду с протоном структурным элементом ядра также является нейтрон. В 1933 г. он обосновал протон-нейтронную модель ядра и сформулировал основной тезис, заключающийся в том, что в ядре имеются только тяжелые частицы – протоны и нейтроны. При этом обе частицы могут превращаться друг в друга. В дальнейшем протон и нейтрон стали рассматривать как два состояния одной частицы – нуклона.
А в том же 1933 г. Дж. Чедвик экспериментально доказал существование нейтронов в атомных ядрах. Он облучал α–частицами бериллиевую пластинку и исследовал реакцию превращения бериллия (Be) в углерод (С) с испусканием нейтрона n).
Нейтроны, вылетающие из бериллия, направлялись в камеру Вильсона, наполненную азотом (N), и при попадании нейтрона в и протон атома азота образовывалось ядро бора (В) и α–частицы .
Сам нейтрон не дает трека в камере Вильсона, но по трекам ядра бора и α–частицы можно рассчитать, что данная реакция вызвана нейтральной частицей массой в одну атомную единицу массы, т.е. нейтроном. Отметим, что свободный нейтрон существует недолго, он радиоактивен, период его полураспада составляет около 8 мин, после чего он превращается в протон, испуская β–частицу (электрон) и нейтрино. После открытия нейтрона протон-нейтронная модель строения атомных ядер Д.Д. Иваненко стала общепризнанной.
Все ядерные реакции сопровождаются испусканием тех или иных элементарных частиц. Продукты ядерных реакций оказываются радиоактивными, их называют искусственно радиоактивными изотопами. Явление искусственной радиоактивности было открыто в 1934 г. известными французскими физиками Фредериком и Ирен Жолио-Кюри.
Как и естественно радиоактивные вещества, искусственно полученные радиоактивные изотопы испускают известные α, β, и γ–излучения. Но кроме перечисленных излучений Фредерик и Ирен Жолио-Кюри открыли новый вид радиоактивности – испускание положительных электронов-позитронов.
Впервые это удалось установить с помощью камеры Вильсона при бомбардировке α–частицами некоторых легких элементов (бериллия, бора, алюминия), в результате чего был искусственно создан целый ряд новых радиоактивных изотопов, не наблюдаемых ранее в природе. Примером образования позитронного радиоактивного изотопа может служить реакция бомбардировки алюминия α–частицами. И данном случае ядро алюминия испускает нейтрон и превращается в ядро радиоактивного изотопа фосфора , который в свою очередь, испуская позитрон β+, превращается в стабильный изотоп кремния .
В промышленном масштабе искусственные радиоактивные изотопы обычно получают облучением (главным образом нейтронным) соответствующих химических элементов в ядерных реакторах.
После того, как было установлено, что ядра атомов состоят и протонов и нейтронов, теория атомного ядра получила дальнейшее развитие в направлении изучения взаимодействий частиц внутри ядра, а также структуры атомных ядер различных элементов.
Ниже приведены основные сведения о свойствах и строении ядер.
1. Ядром называется центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. Все атомные ядра состоят из протонов и нейтронов, которые считаются двумя зарядовыми состояниями одной частицы – нуклона.
Протон имеет положительный электрический заряд, равный по абсолютной величине заряду электрона е=1,6 –19 Кл и массу покоя тр ~ 1,6726 • 10 –27кг.
Нейтрон не имеет электрического заряда, его масса немног больше массы протона – тп = 1,6749 • 10 –27 кг.
Массу ядер элементарных частиц обычно выражают в атомных единицах массы (а.е.м.). За атомную единицу массы принята 1/12 массы изотопа углерода : 1 а.е.м. = 1,66 • 10 –27 кг. Следовательно, тр = 1,00728 а.е.м., а тп = 1,00866 а.е.м.
2. Зарядом ядра называется величина Ze, где е – величина заряда протона; Z – порядковый номер химического элемента в периодической системе Менделеева, равный числу протонов в ядре.
В настоящее время известны ядра с порядковым номером Z = 1 до Z = 114. Для легких ядер отношение числа нейтронов (N) к числу протонов (Z) близко или равно единице. Для ядер химических элементов, расположенных в конце периодической системы, отношение N/Z = 1,6.
3. Общее число нуклонов в ядре А = N + Z называется массовым числом. Нуклонам (протону и нейтрону) приписывается массовое число, равное единице. Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Ядра химических элементов принято обозначать символом .X, А, Z где X – символ химического элемента; А – массовое число; Z – атомный номер.
Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных paдиоактивных изотопов.
Все изотопы одного химического элемента имеют одинаковое строение электронных оболочек. Поэтому у изотопов данного элемента одинаковы все химические свойства. В настоящее время установлено, что большинство химических элементов, встречающих в природе, представляет собой смесь изотопов. Поэтому указанные в таблице Менделеева атомные массы элементов часто значительно отличаются от целых чисел.
4. Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границ ядра. Эмпирическая формула для радиуса ядра R = R А, где R= (1,3/1,7)10 –15 м, может быть истолкована как пропорциональность объема ядра числу нуклонов в нем.
5. Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра (Ртт) в целом. Единицей измерения магнитных моментов ядер служит ядерный магнетон μ яд = eh,/2тр, где е – абсолютная величина заряда электрона; h – постоянная Планка; тр – масса протона. Ядерный магнетон μ яд в 1836,5 раза меньше магнитного момента электрона в атоме, откуда следует, что магнитные свойства атомов определяются магнитными свойствами его электронов.
6. Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения сферически симметричного является квадруполъный электрический момент ядра Q. Если плотность ядра считать везде одинаковой, то Q определяется только формой ядра.
Нуклоны, составляющие ядро, связаны между собой особыми силами притяжения – ядерными силами. Устойчивость атомных ядер большинства элементов свидетельствует о том, что ядерные силы исключительно велики: они должны превышать значительные кулоновские силы отталкивания, действующие между протонами, расположенными на расстояниях порядка 10–13 см (порядок размеров ядра). Ядерные силы – силы особого рода, связанные с существованием внутри ядра особого вида материи – ядерного поля.
В настоящие время принята мезонная теория ядерных сил, согласно которой нуклоны взаимодействуют друг с другом путем обмена особыми элементарными частицами – π–мезонами – квантами ядерного поля.
Наличие обменных частиц в ядре – мезонов – вначале было предсказано теоретически японским ученым Хидоки Юкавой в 1936 г., а затем открыто в космических лучах в 1947 г.
Общая характеристика ядерных сил сводится к следующему.
1. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами ядра порядка 10 –15 м. Длина (1,5 ÷ 2,2) –10 –15 м называется радиусом действия ядерных сил.
2. Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий в зеркальных ядрах (так называются ядра, в которых общее число нуклонов одинаково, но число протонов в одном равно числу нейтронов в другом).
3. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел А. Практически полное насыщение ядерных сил достигается у α–частицы, которая является очень устойчивым образованием.
Нуклоны прочно связаны в ядре ядерными силами. Для разрыва этой связи, т.е. для полного разобщения нуклонов, нужно совершить значительную работу. Энергия, необходимая для разобщения нуклонов, составляющих ядро, называется энергией связи ядра. Величину энергии связи можно определить на основе закона сохранения энергии и закона пропорциональности массы и энергии в соответствии с формулой Эйнштейна Е = тс2.
Согласно закону сохранения энергии, энергия нуклонов, связанных в ядре, должна быть меньше энергии разобщенных нуклонов на величину энергии связи ε0. С другой стороны, согласно закону пропорциональности массы и энергии, изменение энергии системы ΔW должно сопровождаться пропорциональным изменением массы системы на Δm, т.е. ΔW = Δmc2, где с – скорость света в вакууме.
Так как в данном случае ΔW есть энергия связи ядра, то масса атомного ядра должна быть меньше суммы масс нуклонов, составляющих ядро, на величину Δm, которая называется дефектом массы ядра. Из соотношения ΔW = Δmc2 можно рассчитать энергию связи ядра, если известен дефект массы этого ядра Δm.
В качестве примера рассчитаем энергию связи ядра атома гелия. Оно состоит из двух протонов и двух нейтронов. Масса протона тр = 1,0073 а.е.м., масса нейтрона – тп = 1,0087 а.е.м. Следовательно, масса нуклонов, образующих ядро, равна 2тр + 2 тп = 4,0320 а.е.м. Масса же ядра атома гелия тя = 4,0016 а.е.м. Таким образом, дефект масс атомного ядра гелия равен Δm = 4,0320 – 4,0016 = 0,03 а.е.м., или Δm = 0,03 • 1,66 • 10~27 = 5 • 10~29 кг. Тогда энергия связи ядра гелия
ΔW = Δmc2 =510-29 9-1016Дж=28 МэВ.
Общая формула для расчета энергии связи любого ядра (в джоулях) будет иметь вид:
ΔW = c2{[Z-mp+{A-Z)mn]- тя},
где Z– атомный номер; А — массовое число.
Энергия связи ядра, приходящаяся на один нуклон, называется удельной энергией связи (ε). Следовательно, ε=ΔW/А (удельная энергия связи) характеризует устойчивость атомных ядер. Чем больше s, тем устойчивее ядро.
На рис. 1 представлены результаты расчетов удельных энергий связи для разных атомов (в зависимости от массовых чисел А).
Из графика на рис. 2.2 следует, что удельная энергия связи максимальна (8,65 МэВ) у ядер с массовыми числами порядка 100. У тяжелых и легких ядер она несколько меньше (например, 7,5 МэВ у урана и 7 МэВ у гелия), у атомного ядра водорода удельная энергия связи равна нулю, что вполне понятно, потому что в этом ядре нечего разобщать: оно состоит только из одного нуклона (протона).
а.е.м.
Рис. 1. Зависимость удельных энергий связи от массовых чисел
Всякая ядерная реакция сопровождается выделением или поглощением энергии. При делении тяжелых ядер с массовыми числами А порядка 100 (и более) ядерная энергия выделяется.
Выделение ядерной энергии происходит и при ядерных реакционного типа – при объединении (синтезе) нескольких легких ядер в одно ядро. Таким образом, выделение ядерной энергии происходит как при реакциях деления тяжелых ядер, так и при реакциях синтеза легких ядер. Количество ядерной энергии Δε, выделяемое каждым прореагировавшим ядром, равно разности между энергией связи ε продукта реакции и энергией связи исходного ядерного материала.
Соотношение ∆E∆t>ħ/2 означает, что преобразование энергии с точностью ∆Е должно занять интервал времени равный, по меньшей мере, ∆t~ ħ/∆E. Это соотношение ответственно за естественную ширину спектральных линий атомов и ионов. Время жизни возбужденного состояния атомов имеет порядок t~10-8÷10-9с. Следовательно, неопределенность энергии таких состояний составляет ∆E~ ħ/t, чему соответствует естественная ширина спектральных линий. Если неопределенность энергии ∆Е ~ ħ/∆t соответствует энергии некоторой частицы (mс2, hv), to эта частица, возникнув из «ничего», может находиться в виртуальном состоянии время ∆t без нарушения закона сохранения энергии. В современной квантовой теории поля взаимодействие частиц и их взаимные превращения рассматриваются как рождение или поглощение каждой реальной частицей виртуальных частиц. Любая частица непрерывно испускает или поглощает виртуальные частицы разных типов. Так, например, электромагнитное взаимодействие – результат обмена виртуальными фотонами, гравитационное – гравитонами. Поле ядерных сил обусловлено виртуальными π–мезонами. Слабое взаимодействие создают векторные бозоны (открытые в 1983 году в ЦЕРНе, Швейцария-Франция). А переносчиком сильного взаимодействия являются глюоны (от английского слова, означающего «клей»). Соотношение неопределенностей ограничивает применимость классической механики к микрообъектам. Оно вызвало многочисленные философские дискуссии. Координаты частицы и ее импульс, изменение энергии и время, в течение которого произошло это изменение, называются взаимно дополнительными величинами. Получение экспериментальной информации об одних физических величинах, описывающих микрочастицу, неизбежно связано с потерей информации о других величинах, дополнительных к первым. Это утверждение, впервые сформулированное датским физиком Н. Бором, называется принципом дополнительности. Бор объяснял принцип дополнительности влиянием измерительного прибора, который всегда является макроскопическим прибором, на состояние микрообъекта. Однако с позиций современной квантовой теории, состояния, в которых взаимно дополнительные величины имели бы одновременно точно определенные значения, принципиально невозможны. Принцип дополнительности отражает объективные свойства квантовых систем, не связанные с существованием наблюдателя, а роль измерительного прибора заключается в «приготовлении» некоторого состояния системы. Любая новая теория, претендующая на более глубокое описание физической реальности и на более широкую область применения, чем старая, должна включать предыдущую как предельный случай. Так релятивистская механика (специальная теория относительности) в пределе малых скоростей переходит в ньютоновскую. В квантовой механике принцип соответствия требует совпадения ее физических следствий в предельном случае с результатами классической теории. В принципе соответствия проявляется тот факт, что квантовые эффекты существенны лишь при рассмотрении микрообъектов, когда величины размерности действия сравнимы с постоянной Планка. С формальной точки зрения принцип соответствия означает, что в пределе ħ → 0 квантовомеханическое описание физических объектов должно быть эквивалентно классическому. Значение принципа соответствия выходит за рамки квантовой механики – он войдет составной частью в любую новую теоретическую схему. В современной физике термин «элементарные частицы» обычно употребляется не в своем точном значении, а менее строго – для наименования большой группы мельчайших частиц материи, которые не являются атомами или атомными ядрами (исключение составляет протон). Наиболее важное свойство всех элементарных частиц – способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с другими частицами. Сейчас общее число известных науке элементарных частиц (вместе с античастицами) приближается к 400. Некоторые из них стабильны и существуют в природе в свободном или слабосвязанном состоянии. Это – электроны, протоны, нейтроны, фотоны и различного сорта нейтрино.
Все остальные элементарные частицы крайне нестабильны и образуются во вторичных космических лучах или получаются в лаборатории. Основной способ их генерации – столкновения быстрых стабильных частиц, в процессе которых часть начальной кинетической энергии превращается в энергию покоя образующихся частиц (как правило, не совпадающих со сталкивающимися).
Общими характеристиками всех элементарных частиц являются масса m, время жизни t, спин J и электрический заряд Q.
В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными в пределах точности современных измерений являются электрон (t > 5 • 1021 лет), протон (t > 5 • 10 31 лет), фотон и нейтрино. К квазистабильным относятся частицы, распадающиеся за счет электромагнитного и слабого взаимодействий, их времена жизни t > 5 • 10-20 с. Пример квазистабильной частицы – нейтрон.
Он распадается из-за слабого взаимодействия, среднее время жизни – 15,3 мин: .
Резонансами называют элементарные частицы, распадающиеся за счет сильного взаимодействия; их характерные времена жизни t~ 10-22- 10-24 с.
Электрические заряды элементарных частиц являются целыми кратными величины е≈1,6-10-19 Кл, называемой элементарным электрическим зарядом (зарядом электрона). У известных элементарных частиц Q = 0, ±1, ±2.
Спин элементарных частиц является целым или полуцелым кратным постоянной Планка ħ.
Частицы с полуцелым спином называются фермионами. К фермионам относятся лептоны (например, электрон и нейтрино) и барионы, состоящие из кварков (например, протон и нейтрон). Системы фермионов описываются квантовой статистикой Ферми-Дирака. Фермионы подчиняются принципу запрета Паули и в данном квантовом состоянии системы фермионов не может, находится более одной час-тицы. Фермионы образуют материальные структуры.
Частицы с целым или нулевым спином называются бозонами. К бозонам относятся частицы с нулевой массой покоя (фотон, гравитон), а также мезоны, состоящие из кварков (например π–мезоны). Системы таких частиц описываются статистикой Бозе-Эйнштейна. Бозоны не подчиняются принципу запрета Паули и для них не накладывается ограничения на число частиц, которые могут находиться в некотором квантовом состоянии. Они образуют поле взаимодействия (согласно квантовой теории поля) между фермионами.
Так, например, материальные структуры образованы электронами и нуклонами (протонами и нейтронами, образующими ядра атомов), а электромагнитное поле взаимодействия между ними образуют фотоны (точнее сказать виртуальные фотоны) (рис. 2).

Рис.2. Классификация элементарных частиц
Мезоны и барионы состоят из кварков, и поэтому имеют общее название – адроны. Все известные адроны состоят либо из пары кварк-антикварк (мезоны), либо из трех кварков (барионы). Кварки и антикварки удерживаются внутри адронов глюонным полем. Кварки различаются по «аромату» и «цвету». Каждый кварк может находиться в одном из трех цветовых состояний: «красном», «синем» и «желтом». Что касается «ароматов», то их известно 5 и предполагается наличие шестого. Ароматы кварков обозначаются буквами u, d, s, с, b, t, которые соответствуют английским словам up, down, strange, charmed, beaty и truth. Более того, каждому кварку соответствует его антикварк. Ни один кварк, ни разу не был Зарегистрирован в свободном виде, несмотря на многолетние поиски. Кварки можно наблюдать только внутри адронов.
Физика элементарных частиц базируется на понятии о фундаментальных взаимодействиях гравитационном, электромагнитном, сильном и слабом.
Электромагнитное взаимодействие обусловлено обменом фотонами, которые изучены лучше остальных бозонов. Источник фотонов – электрический заряд. Гравитационное взаимодействие связано с пока гипотетическими частицами – гравитонами. Нейтральный (Z 0) и заряженные (W +,W –)бозоны являются переносчиками слабого взаимодействия между электронами, протонами, нейтронами и нейтрино. Переносчиками сильного взаимодействия являются глюоны. Они как бы склеивают кварки в адронах. Источники глюонов – так называемые «цветовые» заряды. Они не имеют никакого отношения к обычным цветам и названы так для удобства описания. Каждый из шести ароматов кварков существует в трех цветовых разновидностях: желтой, синей или красной (ж, с, к соответственно). Антикварки тоже несут цветовые антизаряды. Важно подчеркнуть, что три заряда и три антизаряда совершенно не зависят от ароматов кварков. Таким образом, в настоящее время полное число кварков и антикварков (с учетом трех цветов и шести ароматов достигло 36. Кроме того, имеется еще девять глюонов. Глюоны, как и кварки, не наблюдаются в свободном состоянии.
Существование кварков и глюонов приводит к появлению нового, состояния вещества, которое носит название кварк-глюонной плазмы.
Это плазма, состоящая не из электронов и ионов, как обычная плазма, а из кварков и глюонов, слабо взаимодействующих друг с другом или не взаимодействующих вообще.
Одной из главных задач микрофизики, о решении которой мечтал еще А. Эйнштейн, является создание единой теории поля, которая объединила бы все известные фундаментальные взаимодействия. Создание такой теории означало бы фундаментальный прорыв во всех областях науки.
К настоящему времени создана и признана теория, которая объединяет два фундаментальных взаимодействия – слабое и электромагнитное. Она называется единой теорией слабого и электромагнитного (электрослабого) взаимодействия и утверждает, что существуют особые частицы – переносчики взаимодействия между электронами, протонами, нейтронами, нейтрино. Эти частицы, названные бозонами W+, W– и Z°, были теоретически предсказаны в 70-х гг. прошлого века и экспериментально обнаружены в 1983 г.
Теория сильного взаимодействия именуется квантовой хромодинамикой. Данная теория, описывающая взаимодействие кварков и глюонов, построена по образу квантовой электродинамики, которая, в свою очередь, описывает электромагнитные взаимодействия, обусловленные обменом фотонами. В отличие от электрически нейтральных фотонов, глюоны являются носителями «цветовых» зарядов. Это приводит к тому, что при попытке развести их в пространстве энергия взаимодействия возрастает. В результате глюоны и кварки не существуют в свободном состоянии: они «самозапираются» внутри адронов.
Современную теорию элементарных частиц, состоящую из теорий электрослабого взаимодействия и квантовой хромодинамики, принято называть стандартной моделью. Эта сложная, но уже почти законченная феноменологическая теория – главный теоретический инструмент, с помощью которого решаются задачи микрофизики
«Великое объединение» – так называют теоретические модели, исходящие из представлений о единой природе сильного, слабого и электромагнитного взаимодействий. Оно призвано объединить все существующие частицы: фермионы, бозоны и скалярные частицы. В рамках теории «Великого объединения» хорошо объясняются многие очень важные явления, в частности такие, как наблюдаемая глюонная асимметрия Вселенной, малая ненулевая масса покоя нейтрино, квантование электрического заряда и существование решений типа магнитных монополей Дирака. По последним данным, среднее время жизни протона составляет более 1,6•1033 лет. Доказательство нестабильности протона явилось бы открытием фундаментальной важности. Однако пока этот распад не зафиксирован. Ученые надеются, что дальнейшее развитие моделей «Великого объединения» приведет к объединению всех взаимодействий, включая и гравитационное (суперобъединение). Но это – дело будущего.
В микрофизике известна и играет важную роль некая фундаментальная длина, называемая планковской, или гравитационной, длиной – lg = 1,6–33 см. Считается, что длины меньше планковской в природе не существует. Совместно с планковским временем tg ~ 1,6•10–43с они составляют пространственно-временные кванты, которые призваны лечь в основу будущей квантовой теории гравитации. По мнению академика В.Л. Гинзбурга, физический смысл длины lg заключается в том, что при меньших масштабах уже нельзя пользоваться классической релятивистской теорией гравитации и, в частности, общей теорией относительности (ОТО), построение которой было завершено Эйнштейном в 1915 г.
В настоящее время наименьший «прицельный параметр», достигнутый на современных ускорителях, составляет lf ~ 10 –17 см. Таким образом, можно заключить, что вплоть до расстояний lf ~ 10 –17 см и времен lf/c ~ 10–27 с существующие пространственно-временные координаты справедливы. Значение lf отличается от значения lg на целых 16 порядков, поэтому вопрос о фундаментальной длине еще остается актуальным для науки.
В первой половине XX в., когда объектами изучения микрофизики были атом, а затем атомное ядро, для того чтобы понять поведение электронов в атомах, пришлось совершить подлинную революцию в науке – создать квантовую механику. Микрофизика занимала тогда в естествознании совершенно особое место. Благодаря ее успехам мы смогли разобраться в строении вещества. Микрофизика – это фундамент современной физической науки.
2.3.2. Макромир
От микромира к макромиру. Теория строения атома дала химии ключ к познанию сущности химических реакций и механизма образований химических соединений – более сложного молекулярного уровня организации вещественной материи по сравнению с элементной атомной формой.
Квантовая механика позволила решить очень важный вопрос о расположении электронов в атоме и установить зависимость свойств элементов от строения электронных оболочек. В настоящее время разработаны схемы строения атомов всех химических элементов. При их построении ученые исходили из общих соображений об устойчивости различных комбинаций электронов. И естественно, что путеводной нитью при этом служил периодический закон Д.И. Менделеева.
При разработке схем строения атомов элементов учитывалось следующее:
принималось, что число электронов в атоме равно заряду атомного ядра, т.е. порядковому номеру элемента в периодической системе;
вся электронная оболочка распадается на несколько слоев соответствующих определенным энергетическим уровням (n = 1, 2,3,4,...);
на каждом уровне п может находиться не более N электронов, где N= 2п2;
состояние каждого электрона в атоме определяется совокупностью четырех квантовых чисел п, l, т и s.
В соответствии с принципом Паули все электроны в атоме отличаются друг от друга хотя бы одним квантовым числом. В атоме нет двух электронов, у которых все квантовые числа одинаковы, соответствии с указанными допущениями построены упрощенные схемы строения атомов для первых трех периодов таблицы Менделеева.
Несмотря на условность и простоту этих схем, они тем не менее достаточны для объяснения важнейших свойств элементов и ия соединений.
Так, например, на первом энергетическом уровне ( n = 1, l =0, т = 0) могут находиться только два электрона, отличающиеся своими спиновыми квантовыми числами (s = ±1/2). Других электронов при п = 1 быть не может. Это соответствует тому, что если на первом уровне имеется один электрон, то это — атом водорода; если два электрона, то это – атом гелия. Оба элемента заполняют первый ряд таблицы Менделеева.
Второй ряд таблицы Менделеева занимают элементы, электроны которых расположены на втором энергетическом уровне (п = 2). Всего на втором энергетическом уровне может быть восемь электронов (N=2·22).
Действительно, при п = 2 могут иметь место следующие состояния электронов: если l = 0 и т = 0, то может быть два электрона с противоположными спинами; если l = 1, то т может принимать три значения (т = –1; 0; +1), и каждому значению т соответствует также по два электрона с разными спинами. Таким образом, всего будет восемь электронов.
Второй ряд элементов в таблице Менделеева, у которых последовательно добавляется по одному электрону на втором энергетическом уровне, — литий, бериллий, бор, углерод, азот, кислород, фтор, неон.
При главном квантовом числе п = 3 l может принимать три значения (l =0; 1; 2), а каждому l соответствует несколько значений т. при l = 0 т = 0; при l ~ 1 т = –1; 0; +1; при l=2 т = –2; -1; 0; I 1; +2 (рис. 2.4).
Так как всего может быть девять значений т, а каждому состоянию т соответствует два электрона с разными значениями s = ±1/2, nо всего на третьем энергетическом уровне (п = 3) может быть 18 электронов (N = 2·З2).
Третий ряд в таблице Менделеева соответствует последовательному заполнению электронами внешнего энергетического уровня у элементов от натрия до аргона (натрий, магний, алюминий, кремний, фосфор, сера, хлор, аргон).
Энергетические уровни и возможные состояния электронов в атоме: возможные орбиты, на которых электрон в атоме движется вокруг ядра, можно изобразить в виде окружностей (А), в каждой из которых точно укладывается целое число длин световых волн, равное главному квантовому числу п. Двумерный аналог атома может быть описан двумя квантовыми числами, а реальный атом характеризуют три квантовых числа.
Следующие ряды периодической системы соответствуют более сложным правилам заполнения внешних уровней атомов электронами, поскольку при увеличении общего числа электронов, а атомах начинают проявляться коллективные взаимодействия между разными группами электронов, расположенных на разных энергетических уровнях. Это приводит к необходимости учитывать ряд более тонких эффектов.
Выяснение строения электронных оболочек атомов оказало влияние и на саму структуру периодической системы, несколько изменив существовавшее до тех пор деление элементов на периоды. В прежних таблицах каждый период начинался с инертного газа, причем водород оставался вне периодов. Но теперь стало ясно, что новый период должен начинаться с того элемента, в атоме которого впервые появляется новый электронный слой в виде одного валентного электрона (водород и щелочные металлы), и заканчиваться тем элементом, в атоме которого этот слой имеет восемь электронов, образующих очень прочную электронную структуру, свойственную инертным газам.
Теория строения атомов разрешила также вопрос о положении в периодической системе редкоземельных элементов, которые ввиду их большого сходства друг с другом нельзя было распределить по различным группам. Атомы этих элементов отличаются друг от друга строением одного из внутренних электронных слоев, в то время как число электронов в наружном слое, от которого главным образом зависят химические свойства элемента, у них одинаково. По этой причине все редкоземельные элементы (лантаноиды) помещены теперь вне общей таблицы.
Однако основное значение теории строения атомов заключалось в раскрытии физического смысла периодического закона, который, но времена Менделеева был еще неясен. Достаточно взглянуть на таблицу расположения электронов в атомах химических элементов, чтобы убедиться, что с увеличением зарядов атомных ядер постоянно повторяются одни и те же комбинации электронов в наружном слое атома. Таким образом, периодическое изменение свойств химических элементов происходит вследствие периодического возвращения к одним и тем же электронным конфигурациям.
Попытаемся установить более точно, в какой зависимости от строения электронных оболочек находятся химические свойства атомов.
Рассмотрим сначала изменение свойств в периодах. В пределах каждого периода (кроме первого) металлические свойства, наиболее резко выраженные у первого члена периода, при переходе к последующим членам постепенно ослабевают и уступают место металлоидным свойствам: в начале периода стоит типичный металл, в конце – типичный металлоид (неметалл) и за ним – инертный газ.
Закономерное изменение свойств элементов в периодах может быть объяснено следующим образом. Наиболее характерным свойством металлов с химической точки зрения является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, тогда как металлоиды, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов.
Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, которая называется потенциалом ионизации.
Потенциал ионизации имеет наименьшее значение у элементов, начинающих период, т.е. у водорода и щелочных металлов, и наибольшее – у элементов, заканчивающих период, т.е. у инертных газов. Величина его может служить мерой большей или меньшей «металличности» элемента: чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента.
Величина потенциала ионизации зависит от трех причин: от величины заряда ядра, радиуса атома и особого рода взаимодействия между электронами в электрическом поле ядра, вызванного их волновыми свойствами. Очевидно, что чем больше заряд ядра и чем меньше радиус атома, тем сильнее притягивается электрон к ядру тем больше потенциал ионизации.
У элементов одного и того же периода при переходе от щелочного металла к инертному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Следствием этого и является постепенное увеличение потенциала ионизации и ослабление металлических свойств. У инертных газов, хотя радиусы их атомов больше, чем радиусы атомов галогенов, стоящих в том же периоде, потенциалы ионизации больше, чем у галогенов. В этом случае сильно сказывается действие третьего из вышеупомянутых факторов – взаимодействия между электронами, вследствие чего внешняя электронная оболочка атома инертного газа имеет особую энергетическую устойчивость, и удаление из нее электрона требует значительно большей затраты энергии.
Присоединение электрона к атому металлоида, превращающее его электронную оболочку в устойчивую оболочку атома инертного газа, сопровождается выделением энергии. Величина этой энергии при расчете на 1 грамм-атом элемента служит мерой так называемого сродства к электрону. Чем больше сродство к электрону, тем легче атом присоединяет электрон. Сродство атомов металлов к электрону равно нулю, – атомы металлов не способны присоединять электроны. У атомов же металлоидов сродство к электрону тем больше, чем ближе к инертному газу стоит металлоид в периодической системе. Поэтому в пределах периода металлоидные свойства усиливаются по мере приближения к концу периода.
В повседневной жизни нам не приходится иметь дело с атомами. Окружающий нас мир построен из объектов, образованных из гигантского числа атомов в виде твердых тел, жидкостей и газов. Следовательно, нашим следующим шагом должно быть изучение того, как атомы взаимодействуют друг с другом, образуя молекулы, а затем и макроскопическое вещество. Даже человеческая индивидуальность (и вообще поведение всех живых организмов) является результатом различий в структурах гигантских молекул, несущих генетическую информацию.
Молекулы состоят из одинаковых или различных атомов, соединенных между собой межатомными химическими связями. Устойчивость молекул свидетельствует о том, что химические связи обусловлены силами взаимодействия, связывающими атомы в молекулу.
Силы межатомного взаимодействия возникают между внешними электронами атомов. Потенциалы ионизации этих электронов значительно меньше, чем у электронов, находящихся на внутренних энергетических уровнях.
Нахождение конкретных формул химических соединений значительно упрощается, если воспользоваться понятием о валентности элементов, т.е. свойством его атомов присоединять к себе или замещать определенное число атомов другого элемента.
Понятие о валентности распространяется не только на отдельные атомы, но и на целые группы атомов, входящие в состав химических соединений и участвующие как одно целое в химических реакциях. Такие группы атомов получили название радикалов.
Физические основы химических связей в молекулах вещества. Однако природа сил, обусловливающих связь между атомами в молекулах, долгое время оставалась неизвестной. Только с развитием учения о строении атома появились теории, объясняющие причину различной валентности элементов и механизм образования химических соединений на основе электронных представлений. Все эти теории основываются на существовании связи между химическими и электрическими явлениями.
Остановимся, прежде всего, на отношении веществ к электрическому току.
Одни вещества являются проводниками электрического тока, как и твердом, так и в жидком состоянии: таковы, например, все металлы. Другие вещества в твердом состоянии тока не проводят, но элекропроводны в расплавленном виде. К ним принадлежит огромное большинство солей, а также многие окислы и гидраты окислов. Наконец, третью группу составляют вещества, не проводящие тока ни в твердом, ни в жидком состоянии. Сюда относятся почти все металлоиды.
Опытом установлено, что электропроводность металлов обусловлена движением электронов, а электропроводность расплавленных солей и им подобных соединений – движением ионов, имеющих противоположные заряды. Например, при прохождении тока через расплавленную поваренную соль к катоду движутся положительно заряженные ионы натрия Na+, а к аноду – отрицательно заряженные ионы хлора Сl–. Очевидно, что в солях ионы существуют уже в твердом веществе, расплавление лишь создаст условия для их свободного движения. Поэтому такие соединения получили название ионных соединений. Вещества, практически не проводящие тока, не содержат ионов: они построены из электрически нейтральных молекул или атомов. Таким образом, различное отношение веществ к электрическому току является следствием различного электрического состояния частиц, образующих эти вещества.
Указанным выше типам веществ отвечают два различных типа химической связи:
а)ионная связь, иначе называемая электровалентной (между противоположно заряженными ионами в ионных соединениях);
б)атомная, или ковалентная, связь (между электронейтральными атомами в молекулах всех остальных веществ).
Ионная связь. Такого типа связь существует между противоположно заряженными ионами и образуется в результате простого электростатического притяжения ионов друг к другу.
Положительные ионы образуются путем отщепления от атомов электронов, отрицательные – путем присоединения электронов к атомам.
Так, например, положительный ион Na+ образуется при отщеплении от атома натрия одного электрона. Так как в наружном слое атома натрия находится только один электрон, то естественно предположить, что именно этот электрон, как наиболее удаленный от ядра, и отщепляется от атома натрия при превращении его в ион. Подобным же образом ионы магния Mg2+ и алюминия А13+ получаются в результате отщепления от атомов магния и алюминия соответственно двух и трех внешних электронов.
Напротив, отрицательные ионы серы и хлора образуются путем присоединения к этим атомам электронов. Поскольку внутренние электронные слои в атомах хлора и серы заполнены, дополнительные электроны в ионах S2 и Сl–, очевидно, должны были занять места во внешнем слое.
Сравнивая состав и строение электронных оболочек ионов Na+, Mg2+, А13+, мы видим, что у всех этих ионов они одинаковы – такие же, как у атомов инертного газа неона (Ne).
В то же время ионы S2 и Сl–, образующиеся в результате присоединения электронов к атомам серы и хлора, имеют такие же электронные оболочки, как и атомы аргона (Аг).
Таким образом, в рассмотренных случаях при превращении атомов в ионы электронные оболочки ионов уподобляются оболочкам атомов инертных газов, наиболее близко к ним расположенных в периодической системе.
Современная теория химической связи объясняет это тем, что электронные группировки в атомах инертных газов (два электрона в наружном слое атома гелия и восемь электронов в атомах остальных инертных газов) являются особенно устойчивыми. Именно вследствие устойчивости этих группировок инертные газы и не способны вступать в соединение с другими элементами. Атомы, имеющие в наружном слое менее восьми электронов, стремятся приобрести структуру инертных газов, отдавая «лишние» электроны или пополняя их число в своем наружном слое до восьми за счет электронов других атомов, что и происходит при образовании большинства химических соединений, состоящих из ионов.
Процесс образования химического соединения ионного типа из атомов можно представить следующим образом.
Сначала атомы превращаются в разноименно заряженные ионы вследствие перехода электронов от одного атома к другому, а затем уже ионы взаимно притягиваются, образуя соединение с ионной связью.
Положим, например, что атомы натрия, имеющие в наружной оболочке только один электрон, встречаются с атомами хлора, наружная оболочка которых содержит семь электронов. Атомы натрия отдают свои «лишние» электроны, атомам хлора, превращаясь в положительные однозарядные ионы с электронной конфигурацией инертного газа неона. В то же время атомы хлора, присоединившие к своему наружному слою по одному электрону, становятся отрицательными однозарядными ионами со структурой атомов аргона. После этого сила электрического притяжения между разноименными зарядами связывает образовавшиеся ионы друг с другом, в результате чего получается соль – хлористый натрий (рис. 3).

Рис.3. Схема образования хлористого натрия
Изложенные выше представления о механизме образования ионных соединений приводят к заключению, что валентность элементов в ионных соединениях характеризуется числом электрических зарядов их ионов. Иначе ее называют электровалентностью.
Величина электровалентности определяется числом электронов, отданных атомом при образовании положительного иона или присоединившихся к нему при образовании отрицательного иона. В первом случае электровалентность считается положительной, во втором – отрицательной.
Способность атомов превращаться в положительные или отрицательные ионы зависит от положения соответствующих элементов в периодической системе. Атомы элементов, стоящих в начале периода, имеют меньший заряд ядра, чем атомы элементов, находящиеся в конце периода. В первом случае электроны притягиваются слабее, чем во втором, поэтому склонность атомов к превращению в положительные ионы, вообще говоря, уменьшается в периоде в направлении слева направо.
Ковалентная связь. Предположение об электростатическом притяжении между противоположно заряженными ионами, как о причине возникновения химической связи, явно неприменимо к молекулам простых веществ (водорода Н2, кислорода О2 и др.), а также к молекулам веществ, образованных близкими по химическим свойствам элементами, так как в этом случае трудно допустить возникновение противоположно заряженных ионов. Поэтому по отношению к таким веществам бьиа выдвинута другая теория их образования, получившая название теории ковалентных связей. При разработке этой теории тоже учитывалась химическая устойчивость атомов инертных газов.
Согласно теории ковалентных связей при образовании молекул (как и при образовании ионных соединений) атомы химических элементов приобретают устойчивые электронные оболочки, подобные оболочкам атомов инертных газов. Однако устойчивость эта достигается не путем перехода электронов от одних атомов к другим, а путем образования одной или нескольких пар электронов, которые становятся общими для соединяющихся атомов, т.е. входят одновременно в состав электронных оболочек двух атомов. Можно представить себе, что эти «спаренные» электроны вращаются по орбитам, охватывающим ядра обоих атомов, и таким образом связывают атомы в молекулу.
Химическая связь, обусловленная наличием электронных пар, называется ковалентной, или атомной, связью, в отличие от электровалентной, или ионной, связи, основанной на электростатическом притяжении между разноименно заряженными ионами.
Предположение о паре электронов, как бы «обслуживающей» два ядра, как о причине возникновения ковалентной связи получило обоснование в волновой механике. Два положительно заряженных ядра можно рассматривать как одно ядро с большим зарядом, чем у каждого из ядер в отдельности. Электрон, вращающийся вокруг такого комбинированного ядра, удерживается более сильно, чем, если бы он вращался около одного из ядер. Этим объясняется энергетическая выгодность образования ковалентных связей. Новая орбит движения электрона в молекуле называется молекулярной. Движение электронов по молекулярным орбитам подчиняется тому же правил Паули, что и движение по атомным орбитам. Поэтому на одной той же молекулярной орбите не может быть больше двух электронов, причем они должны иметь противоположные спины. Электроны одинаковыми спинами на одной и той же молекулярной орбите находиться не могут. Вот почему каждая ковалентная связь образована лишь парой электронов.
Образование молекулярных орбит с точки зрения волновой механики является следствием «перекрывания» атомных орбит. В результате такого перекрывания наибольшая электронная плотность молекулярной орбите, если ее представить, как электронное облако оказывается между ядрами. Это значит, что электроны при движении по молекулярной орбите наиболее часто попадают в область, находящуюся между ядрами. В результате между ядрами создается как бы прослойка из отрицательного электричества, способствующая сближению ядер. Поэтому чем сильнее «перекрываются» атомные орбиты при образовании молекулярных орбит, тем прочнее связь. Валентность или, точнее, ковалентность элемента в данном соединена, определяется числом электронов его атома, идущих на образование общих, или «связующих», электронных пар.
Итак, ковалентная связь между атомами в молекулах обусловливается наличием одной или нескольких общих пар электронов. Так как при образовании ковалентной связи, как правило, не происходит ни потери, ни присоединения электронов к атомам, то понятно, что молекулы с ковалентной связью не содержат ионов. Примером молекул с ковалентной связью может служить вода (Н2,О).
Одним из элементов, образующих ковалентные связи, является углерод. Углерод участвует в молекулярных структурах почти всегда с четырьмя ковалентными связями.
Большая часть животного и растительного мира образована соединениями углерода (С) с водородом (Н) и некоторыми другими элементами, прежде всего азотом (N), кислородом (О), фосфором (Р) и серой (S). Эти соединения первоначально называли органическими соединениями, в отличие от ионных (неорганических), так как по своему химическому составу все животные и растения почти на 98% состоят из указанных шести химических элементов.
Простейшими из органических молекул являются углеводороды, состоящие только из атомов углерода и водорода. Каждая черточка – ковалентная связь, осуществляемая двумя электронами. При комнатной температуре первые четыре вещества данного углеводородного ряда – газы, следующие десять –жидкости, а все последующие – твердые вещества, или парафины.
Сложные органические соединения содержат ряд других элементов. Так, все органические кислоты (например, лимонная) и все спирты (например, этиловый) содержат кислород.
Многие молекулы в живой природе, в частности молекулы белков, чрезвычайно сложны. Несмотря на это, в последнее время были достигнуты большие успехи в определении состава, структуры и функции этих молекул. В частности, многое стало известно о структуре ДНК (дезоксирибонуклеиновой кислоты), несущей генетическую информацию. Хотя эта молекула может содержать до миллиона атомов, ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.
После того, как была выяснена природа сил, приводящих к объединению атомов в молекулы, т.е. природа «химизма», проявляющаяся в огромном многообразии химических превращений вещества, в том числе приводящая к образованию многоатомных сложных молекул, стал ясен механизм первой ступени самоорганизации материи в природе от более простых атомных систем к гораздо более сложным молекулярным системам. Диапазон известных молекулярных структур огромен – от двухатомных молекул типа Н2, О2 до макромолекул органических соединений, состоящих из сотен и тысяч атомов, – белков и нуклеиновых кислот.
Из огромной совокупности разных молекул состоит все неживое и живое вещество природы – макротела. Количественные изменения при переходе от микрообъектов (атомов, молекул) к макротелам большой совокупности микросистем – приводят к существенным качественным изменениям в поведении, следовательно, в описании этих объектов исследования.
На макроуровне принято отдельно рассматривать вещественную молевую материю. Вещество может находиться в четырех агрегатных состояниях – твердые тела, жидкости, газы, плазма. Все явления и процессы в макромире связаны с процессами сохранения и преобразования одних форм движения в другие на основе двух всеобъемлющих законов – закона сохранения и превращения энергии и закона возрастания энтропии.
Указанные макропроцессы изучаются в рамках так называемой физической картины мира – в виде законов механики, статистической фишки, термодинамики и электродинамики. А вся совокупность явлений макромира изучается многочисленными естественно-научными дисциплинами (физикой, химией, геологией, биологией и т.д.).
2.3.3. Мегамир
Объектами мегамира являются тела космического масштаба – кометы, метеориты, астероиды (малые планеты), планеты, планетные пстемы, Солнечная система, звезды (нейтронные, белые и желтые карлики, красные гиганты), звездные системы, черные дыры, квази-звезды (квазары), Галактика (Млечный Путь), Метагалактика, системы галактик.
Огромные расстояния между космическими объектами вызывают необходимость ввода новых величин для измерения расстояний.
Астрономическая единица – среднее расстояние от Земли до солнца: 1 а.е. = 1,5 • 10 11 м = 1,5 108 км.
Световой год – расстояние, которое проходит свет за один год: 1 световой год = 9,46 • 1015 м = 9,46 • 1012 км.
3.Парсек – расстояние, которое в 3,26 раз больше светового года: 1 парсек = 3,1 • 1016 м = 3,1 • 1013 км.
Мегамир (космос) – взаимодействующая и развивающаяся система, а также одна из форм системной организации во Вселенной.
2.4. Пространство и время
Пространство и время – категории, обозначающие основные фундаментальные формы существования материи. Пространство выражает порядок существования отдельных объектов, время – порядок смены явлений и состояний материи. Они играют главную роль на эмпирическом уровне физического познания – непосредственное содержание результатов наблюдений и экспериментов состоит фиксации пространственно-временных совпадений.
Пространство и время служат также одним из важнейших средств конструирования теоретических моделей, интерпретирующих экспериментальные данные. Пространство и время имеют решающее значение для построения физической картины мира.
Все тела имеют определенную протяженность – длину, ширину, высоту. Они различным образом расположены друг относительно друга, составляют части той или иной системы.
Пространство есть форма координации существующих объектов, состояний материи. Порядок сосуществования этих объектов и их состояний образуют структуру пространства.
Явления характеризуются длительностью существования, последовательностью этапов развития. Процессы совершаются либо одновременно, либо один раньше или позже другого. Все это означает, что тела существуют и движутся (изменяются) во времени.
Время – это форма координации сменяющихся объектов и их состояний. Порядок смены этих объектов и состояний образуют структуру времени.
Пространство и время – всеобщие формы существования, координации объектов. Всеобщность данных форм бытия заключается в том, что они есть формы бытия всех предметов и процессов, которые были, есть и будут в мире. В мире все простирается и длится.
2.4.1. Единство и многообразие свойств пространства и времени
Поскольку пространство и время неотделимы от материи, правильнее было бы говорить о пространственно-временных свойствах и отношениях материальных систем. Но при познании пространства и времени ученые часто абстрагируются от их материального содержания, рассматривая их как самостоятельные формы бытия. Обычно выделяют всеобщие и специфические свойства пространства и времени, а также исследуют особенности пространства и времени в микромире и мегамире. Из всеобщих свойств пространства и времени следует отметить их:
Объективность и независимость от человеческого сознания и сознания всех других разумных существ в мире.
Абсолютность – они являются универсальными формами бытия материи, проявляющимися на всех структурных уровнях ее существования.
Неразрывную связь друг с другом и с движущейся материей.
Единство прерывности и непрерывности в их структуре – наличие отдельных тел, фиксированных в пространстве при отсутствии каких-либо «разрывов» в самом пространстве.
Количественную и качественную бесконечность, неотделимую от структурной бесконечности материи – невозможность найти место, где отсутствовали бы пространство и время, а также неисчерпаемость их свойств.
Всюду, где есть любое взаимодействие и движение материи, сосуществование и связь ее элементов, обязательно наличествует пространство и время; всюду, где имеется сохранение материи, длительность ее бытия и последовательность смены состояний, будет и время, включающее в свое содержание все эти процессы.
К общим свойствам пространства относятся:
Протяженность – рядоположенность, существование и связь различных элементов (точек, отрезков, объемов и др.), возможность прибавления к каждому данному элементу некоторого следующего элемента либо возможность уменьшения числа элементов. Протяженность тесно связана со структурностью материальных объектов, обусловлена взаимодействием между составляющими тела элементами материи.
2. Связность и непрерывность – проявляются в характере перемещений тел от точки к точке, в распространении воздействий через различные материальные поля в виде близкодействия передаче материи и энергии. Связность означает отсутствие каких-либо «разрывов» в пространстве и нарушений в распространении воздействий в полях.
3. Трехмерность – общее свойство пространства, обнаруживающееся на всех известных структурных уровнях, органически связано со структурностью систем и их движением. Все материальные процессы и взаимодействия реализуются в пространстве трех измерений (длина, ширина, высота). Три измерения являются тем необходимым и достаточным минимумом, в рамках которого могут осуществляться все типы взаимодействий материальных объектов.
4. Пространству на всех известных структурных уровнях материи присуще единство метрических и топологических свойств. Метрические свойства проявляются в протяженности и характере связи элементов тел. Метрика может быть различной – евклидовой и неевклидовой, причем возможно много разновидностей неевклидовых пространств с различными значениями кривизны. Топологические свойства характеризуют связность, трехмерность, непрерывность, неоднородность, бесконечность пространства, его единство со временем и движением.
Рассмотрим теперь общие свойства времени:
1. Длительность – выступает как последовательность сменяющих друг друга моментов или состояний, возникновение за каждым данным интервалом времени последующих. Длительность предполагает возможность прибавления к каждому данному моменту времени другого, а также возможность деления любого отрезка времени на меньшие интервалы. Длительность обусловлена сохранением материи и ее атрибутов, единством устойчивости и изменчивости в мире. Никакой процесс в природе не может происходить сразу, мгновенно, он обязательно длится во времени, что обусловлено конечной скоростью распространения взаимодействий и изменения состояний.
Аналогично протяженности пространства, длительность относится к метрическим свойствам. Отсутствие же всякой длительности, связанное, например, с состоянием материи типа сингулярности (объект с бесконечной плотностью, гравитационным полем и точечными размерами), означало бы, что материя в этом состоянии не обладает способностью к сохранению и последовательной смене состояний, что равносильно отрицанию всякого материального бытия.
Длительность бытия объектов во времени выступает как единство прерывного и непрерывного. Сохраняемость материи и непрерывная последовательность ее изменений, близкодействие в причинных отношениях определяют и общую непрерывность времени, проявляющуюся в непрерывном переходе предшествующих состояний в – последующие. Прежде чем произойдет какое-либо явление в будущем, должны осуществиться все предшествующие ему изменения, которые его вызывают. Но время как форма бытия материи складывается из множества последовательностей и длительностей существования конкретных объектов, каждый из которых существует конечный период. Поэтому время характеризуется прерывностью бытия конкретных качественных состояний. Но эта прерывность относительна, так как между всеми сменяющими друг друга качествами имеется внутренняя связь и непрерывный переход.
3. Всеобщим свойством времени является необратимость, означающая однонаправленное изменение от прошлого к будущему. Прошлое порождает настоящее и будущее, переходит в них. К прошлому относятся все те события, которые уже осуществились и превратились в последующие. Будущие события – это те, которые возникнут из настоящих и непосредственно предшествующих им событий. Настоящее охватывает все те объекты, системы и процессы, которые реально существуют и способны к взаимодействию между собой. Взаимодействие возможно лишь при одновременном сосуществовании объектов. Объекты, сосуществовавшие в прошлом, но перешедшие в другие последующие состояния материи, уже недоступны никакому воздействию. На прошлое физически воздействовать невозможно, можно только изменить представление о прошлом в сознании реально существующих людей.
На отдаленное будущее также нельзя воздействовать, пока оно не возникнет, поскольку реально оно еще не существует. Воздействовать можно на события настоящего и на те ближайшие события будущего, которые из них непосредственно вытекают. Понятие настоящего многозначно (как и понятие современности), ибо охватывает различные временные интервалы. Так, для человека предельно суженное настоящее – это сиюсекундное переживание, фиксируемое с большим трудом. Все, что было до него, относится к прошлому, все последующее – к будущему. Но это настоящее может быть расширено, в зависимости от сопоставляемых интервалов и масштабов события, до часа, дня, года и большего отрезка времени, как и понятие современности.
Для объективно существующих систем настоящее время охватывает тот интервал, в течение которого они физически могут взаимодействовать между собой путем обмена материей и энергией. Если бы скорость распространения воздействий была бесконечной, то это настоящее представляло бы собой сколь угодно малый миг, дающий мгновенное сечение всех событий во Вселенной – настоящих, прошлых и будущих. Но скорость распространения воздействий всегда конечна и не превышает скорости света в вакууме. Для элементарных частиц это будут очень малые отрезки, но для Галактики они возрастают до сотни тысяч лет, а в больших системах они будут еще более значительными. Внутри этого настоящего для больших систем могут укладываться события прошлого, настоящего и будущего малых систем, существующих намного меньшее время, например, жизни конкретных поколений людей. Действие всегда происходит только в одном направлении: от прошлого к настоящему и от него – к будущему, но никогда наоборот.
Какие причины лежат в основе асимметрии и необратимости времени? Сегодня их связывают с процессами самоорганизации материи, законами неравновесной термодинамики. Обратное движение времени означало бы обращение вспять всех процессов развития в мире и причинных отношений, что привело бы к нарушению закона причинности.
Необратимость времени, неэквивалентность прошлого и будущего во все большей мере осознаются различными науками. Раньше считалось, что все физические законы инвариантны относительно замены знака времени, поскольку время в уравнениях квантовой и классической механики берется в квадрате. Это наводило на мысль, что все физические процессы могут происходить одинаково как в прямом, так и в обратном направлении. Но за последние годы были открыты процессы, демонстрирующие необратимость изменений в микромире: распады неустойчивых частиц (нейтронов, мезонов) с излучением нейтрино.
4. Одномерность времени проявляется в линейной последовательности событий, генетически связанных между собой. Если для определения положения тела в пространстве необходимо задать три координаты, то для определения времени достаточно одной. Если бы время имело не одно, а два, три и больше измерений, то это означало бы, что параллельно нашему миру существуют аналогичные и никак не связанные с ним миры-двойники, в которых те же самые события разворачивались бы в одинаковой последовательности.
Рассмотрим теперь специфические и локальные пространственно-временные свойства систем. К пространственным свойствам относятся:
Конкретные пространственные формы тел, их положение в пространстве по отношению друг к другу, скорость пространственного перемещения, размеры тел.
2. Наличие у них внутренней симметрии или асимметрии. Различные виды симметрии (речь о них пойдет ниже) свойственны как макромиру, так и микромиру, являясь фундаментальным свойством неживой природы. Живому веществу присуще свойство пространственной асимметрии, которым обладает молекула живого вещества.
3. Изотропность и неоднородность пространства. Изотропность означает отсутствие выделенных направлений (верха, низа и других), независимость свойств тел, движущихся по инерции, от направления их движения. Полная изотропность присуща лишь вакууму, а в структуре вещественных тел проявляется анизотропия в распределении сил связи. Они расщепляются в одних направлениях лучше, чем в других. Точно так же полная однородность свойственна лишь абстрактному евклидовому пространству и является идеализацией. Реальное пространство материальных систем неоднородно, различается метрикой и значениями кривизны в зависимости от распределения тяготеющих масс.
В биологических системах есть специфические пространственно-временные свойства: асимметрия расположения атомов в молекулах белка и нуклеиновых кислот, собственные временные ритмы и темпы изменения внутри организменных и надорганизменных биосистем, взаимосвязь и синхронизация ритмов друг с другом, а также с вращением Земли вокруг оси и сменой времен года.
Так же и в обществе есть специфические пространственные отношения между его элементами, собственные ритмы и темпы изменения в различных сферах общественной жизни, проявляется ускорение темпов развития с прогрессом науки и техники.
Но во всех этих и других системах проявляются указанные выше всеобщие свойства пространства и времени и большинство их общих свойств.
Пространство-время в макро- и мегамире. В локальных областях макромира, когда можно абстрагироваться от искривления пространства-времени вблизи больших тяготеющих масс, пространство-время характеризуется евклидовой геометрией. В масштабах Галактик и Метагалактики существенную роль начинает играть кривизна пространства-времени, связанная с взаимодействием тяготеющих масс, характер кривизны пространства зависит от средней плотности вещества и поля. При плотности больше критической (10 -29 г/см3) пространство будет замкнуто, а время имеет точки, в которых Метагалактика может сжиматься до сверхплотного состояния. В такой математической точке, как плотность вещества, так и кривизна пространства должны стать бесконечными (большими). В современной общей теории относительности эта точка называется сингулярностью. Сингулярность – это не объект, а то место, где заканчивается действие известных нам физических законов. Наличие нескольких таких временных точек означает, что Метагалактика пульсирует, переходя от стадии расширения к стадии сжатия.
При плотности, меньшей критической, кривизна пространства соответствует незамкнутой Вселенной, имеющей особую временную точку, в которой происходит Большой Взрыв и далее начинается стадия неограниченного расширения. По современным научным данным, более характерен второй сценарий эволюции Метагалактики – сценарий Большого Взрыва и расширяющейся Вселенной,
Биологическое пространство-время. Оно как бы вписано в пространство-время неживой природы. Левая и правая асимметрия в группировках атомов. Отсутствие тождественности левого и правого, резкое проявление левизны организации живого – свидетельство особенностей биологического пространства. Биологическое пространство – сложная композиция различных, неевклидовых пространств организмов и локальных евклидовых пространств неорганических объектов. Биологические часы. Внутреннее время организма: в ритмах биологических часов внешнее время как бы сжимается, затем происходит активный перенос на будущее этих спрессованных ритмов, протекшего внешнего времени. Биологический организм обгоняет время.
Социальное пространство-время. Функциональное расчленение на ряд подпространств, характер которых и взаимосвязь исторически меняются по мере развития общества. Пространство непосредственного обитания. Пространство – зона плодоносных земель. Очеловеченное и не очеловеченное пространство. Природа социального пространства включает: предметный мир, который человек создает и обновляет в своей деятельности, самого человека и его отношение с другими людьми, состояние человеческого сознания, регулирующие его деятельность. Это единое системное целое существует при взаимодействии составляющих его частей – мира вещей «второй природы», мира идей и мира человеческих отношений. Социальное пространство имеет особую пространственную архитектонику, которая не сводится только к отношениям материальных вещей, а включает их отношение к человеку, его социальные связи и те смыслы, которые фиксируются в системе общественно значимых идей.
Специфика социального пространства тесно связана со спецификой социального времени, которая является внутренним и вписана во время природных процессов. Социальное время на ранних стадиях общественного развития замедлено. Социально-историческое время проходит неравномерно. Оно уплотняется и ускоряется в ходе общественного развития. Развитие человеческого общества намного ускоряет все эволюционные процессы, происходящие на Земле.
Поле и вещество, и их взаимосвязь. Под веществом понимают различные частицы и тела, которым присуща масса покоя, тогда как поля и их кванты массы покоя не имеют, хотя обладают энергией, импульсом и множеством других свойств. Поле и вещество нельзя противопоставлять друг другу. Если рассматривать структуру вещества, то во всех системах внутреннее пространство будет «занято» полями, на долю собственно частиц приходится ничтожная часть общего объема системы, т.е. поля входят в структуру вещества. В свою очередь, квантами полей выступают частицы, относящиеся к веществу. В этой неразрывной взаимосвязи частиц и полей можно видеть одно из важнейших свойств проявления единства прерывности и непрерывности в природе.
Частицы обладают относительной прерывностью и локализованностью в пространстве, тогда как поля непрерывно распределены в нем. При этом поля не являются абсолютно континуальными средами. При излучении и поглощении они проявляются относительно дискретно – в виде квантов: фотонов, мезонов и др. Кванты полей взаимодействуют с частицами вещества как дискретные образования.
Характеризуя единство прерывного и непрерывного в природе, следует упомянуть единство корпускулярных и волновых свойств частиц вещества. Обладая относительной дискретностью, микрообъекты при взаимодействиях и движении могут проявлять волновые свойства, способность к дифракции и интерференции, они характеризуются длиной волны, обратно пропорциональной их массе и скорости. Это соотношение выражает корпускулярно-волновой дуализм Луи де-Бройля, причем постоянная h Планка имеет смысл минимального действия в природе, соизмеримость взаимодействия с этой универсальной постоянной указывает на учет квантовых эффектов и дискретности природы.
Согласно идее Планка, универсальной количественной характеристикой минимального квантового воздействия на объекты, находящиеся в микросостояниях, в природе служит постоянная h = 1,054* 10 -34 Дж с, названная постоянной Планка или, иначе, элементарным квантом действия. Любое воздействие, происходящее в природе, можно охарактеризовать целым числом квантов действия N h, так что постоянная Планка играет роль неделимой более «порции» или «атома» воздействия. Поскольку она очень мала, атомизм воздействия, как и всякий другой атомизм, в макроскопических опытах себя не проявляет, что согласуется с наблюдаемой непрерывностью воздействия в классической физике.
К настоящему времени идея Планка обоснована бесчисленными опытами с самыми различными объектами в микросостояниях, из которых следует одно и то же значение h. Они подтвердили универсальный характер постоянной Планка, характеризующей не какое-то конкретное микросостояние объекта или конкретное воздействие (включая наблюдение), а фундаментальный закон природы – существование универсального ограничения на минимально возможную величину квантового воздействия. В этом смысле постоянная Планка h – столь же фундаментальная физическая величина, что и скорость света в вакууме с, значение которой также характеризует не просто скорость какого-то конкретного физического процесса, а фундаментальный закон природы – существование универсального ограничения на максимально допустимую скорость любого материального объекта.
Универсальный характер постоянной Планка проявляется и в том, что через нее могут быть выражены любые физические характеристики, которыми обмениваются два взаимодействующих объекта (из которых один обязательно микроскопичен). Действительно, размерность элементарного кванта действия
[h] = [энергия х время] = [импульс х расстояние] = [момент].
Поскольку время и расстояние в микромире остаются непрерывными, отсюда непосредственно следует представление о дискретности, квантованности энергии, импульса и момента.
Таким образом, вытекающий из реального существования атомов и электронов принцип атомизма вещества (все элементы состоят из дискретных одинаковых атомов определенной массы) удалось ввести в физику лишь после того, как открытый ранее атомизм вещества и электричества был дополнен идеей Планка об атомизме воздействия и его физических характеристик. Дальнейшая разработка этой идеи и применение ее к объяснению все новых и новых экспериментов в микромире привели в конце 20-х годов XX в. к созданию квантовой физики. Ее законы последовательно описывают природу в условиях, когда значение постоянной Планка существенно, и воспроизводят результаты классической физики в тех случаях, когда постоянной Планка в сравнении с другими величинами той же размерности можно пренебречь.
Однако значение открытия Планка, его квантовой гипотезы, не сводится только к построению еще одной фундаментальной физической теории. Как будет продемонстрировано ниже, речь идет о принципиальном изменении взгляда на природу и методов познания ее человеком. Величайшее достижение квантовой физики состоит в том, что она позволила последовательно развить качественно новый, неклассический взгляд на природу, органично сочетающий описание самой физической системы и ее окружения, включая условия наблюдения за системой. В рамках такой концепции нашло себе место и адекватное описание тепловых явлений, первоначально развитое в статистической физике Гиббсом. Таким образом, появление идеи Планка по своей значимости можно сравнить лишь с появлением учения Коперника, положившего начало развитию классического естествознания. В свою очередь, Планк открыл эпоху неклассического естествознания, приведшего к формированию современной физической картины мира.
Конечно, осознание значения открытия Планка как скачка в духовном развитии всего человечества может прийти только после глубокого самостоятельного обдумывания идей неклассической физики. Однако направление, в котором необходимо изменить описание природы в рамках неклассической физики, можно указать уже сейчас. Оно связано с решением проблемы сочетания целостности и сложности в микромире.
Дело в том, что открытие Планка, с одной стороны, создало основу для объяснения существования в природе атомизма, а с другой стороны, показало всю ограниченность, всю «классичность» самого принципа атомизма. Как известно, классическая физика знает только одну форму описания сложной системы – это составная система, т. е. система, состоящая из элементарных объектов. Любая фундаментальная физическая характеристика такой системы «состоит» из нескольких «порций» той же характеристики, присущей составляющим систему более элементарным объектам. Например, заряд системы из трех электронов равен утроенному заряду электрона. Пока предел делимости материи и ее характеристик на отдельные «порции» не был фиксирован, такой подход к описанию сложности за счет отказа от целостности системы был оправдан.
Ситуация коренным образом изменилась с установлением фундаментальной роли в природе постоянной Планка h. Можно утверждать, что фундаментальные физические характеристики обладают определенной целостностью и дальнейшему дроблению не подлежат. В этом смысле классический принцип атомизма себя полностью исчерпал. В то же время, как следует из опыта, микрообъекты отнюдь не являются элементарными бесструктурными образованиями. Они обладают разнообразными свойствами, и более того, существует определенная иерархия микрообъектов: молекулы, атомы, ядра, нуклоны, элементарные частицы. Таким образом, неделимость кванта действия приводит с неизбежностью к требованию целостности микросистем, чуждому классической физике.
2.4.2. Принцип причинности
Классическая физика основывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние в последующий момент времени – следствие.
Известны простая причинно-следственная связь: одна причина – одно следствие; сложные причинные связи: несколько причин – одно следствие; одна причина – несколько следствий; прямые и опосредованные причинно-следственные отношения. Различают взаимодействие: явление-причина испытывает обратное действие со стороны собственного действия. Дальнейшее развитие причинно-следственных отношений – учет условий, поводов, причинных оснований.
В вопросах природы причинности в настоящее время произошла реабилитация схоластики и аристотелизма.
Открытие Макса Планка, предложившего рассматривать излучение абсолютно черного тела не как непрерывный процесс, но как сумму дискретных актов излучения послужило основанием для создания квантовой механики. Уже в самом термине «квант» было нечто от схоластического «quantitas» (количество). Вскоре после открытия Планка событийность восторжествовала над процессуальностью в биологии в результате рождения генетики и теории наследственности Грегори Менделя: в итоге было предложено рассматривать «процесс» эволюции как связанный с последовательностью элементарных квантовых событий – мутаций.
А. Эйнштейн предложил свою знаменитую формулу, определяющую связь между массой и энергией. Вскоре стало ясно, что в природе возможны превращения одних элементарных частиц в другие.
Поль Дирак уже выдвинул гипотезу о существовании античастиц, которые, взаимодействуя с частицами, антиподами которых они являются, превращались в другие частицы – световые кванты, не обладающие массой покоя. При взаимодействии частицы и античастицы вся их суммарная масса покоя превращалась в квантованную энергию. Этот вид взаимодействий получил название аннигиляции.
События, связанные с превращениями элементарных частиц, оказались непредсказуемыми. Здесь реализуется та многовариантность, о которой робко задумывался еще Фома Аквинский, когда ставил вопрос, может ли быть источником непредсказуемости то, что материя сама по себе безразлична к принятию той или иной формы. Само существование нестабильных частиц вернуло смысл казавшимся нелепыми рассуждениям схоластов, например, Суареса о длительности существования формы. В итоге физика элементарных частиц, по крайней мере, отчасти, «реабилитировала» три положения схоластики:
1. Элементы, из которых создан мир, состоят из материи и формы (энергии и специфических свойств: заряд, импульс, спин и т.п.);
2. Мир элементарных превращений событиен;
3. Форма может характеризоваться длительностью существования. К этим трем положениям, известным на метафизическом уровне еще схоластам, физика элементарных частиц добавила еще два положения, которые схоласты считали справедливыми лишь в духовном мире:
1. Не все события предсказуемы («в начале было слово», «первое слово – дороже второго»);
2. Материя обладает определенной свободой в выборе различных форм. Оставался невыясненным вопрос о «локальном движении». На этот вопрос ответила квантовая механика, определив, элементарный квант действия или минимальное действие, возможное в природе равное постоянной Планка (h). Квантовая механика «событийна», а не «процессуальна», и более того, события в квантовой механике не имеют ближайшей производящей причины. С позиций событийного видения мира роль флуктуаций, в конечном счете, играют именно единичные непредсказуемые квантовые события, для которых характерна многовариантность. Разумеется, в большинстве случаев уравнения классической механики с достаточной точностью описывают поведение макросистем в устойчивом и равновесном состоянии. Но если сами эти уравнения указывают на неустойчивость макросистемы, то в игру вступают так называемые «ничтожно малые флуктуации», и если эти флуктуации действительно достаточно малы, то они суть не что иное, как квантовые явления.
То же самое можно, рассуждая по аналогии, сказать и о социуме. Мы далеки от того, чтобы утверждать, что поведение больших групп людей всегда непредсказуемо. Здесь, как и в любом другом случае, когда взаимодействует достаточно большое число объектов, действуют статистические законы, а также могут быть применены критерии, определяющие устойчивость или неустойчивость системы. Если система устойчива, поведением отдельных людей можно пренебречь, подобно тому, как при описании устойчивых макрообъектов мы пренебрегаем квантовыми эффектами. Но если социальная система неустойчива, то роль дестабилизирующих флуктуаций в ней всегда будет играть непредсказуемое поведение отдельных людей, наделенных свободой воли. Именно свобода воли отдельного человека будет тогда причиной многовариантности и непредсказуемости поведения социальной макросистемы. Таким образом, мы можем сделать следующий вывод: самоорганизация как свойство неравновесной системы устремляться к одному из устойчивых состояний и связанная с ней многовариантность и непредсказуемость ее поведения, есть прорыв законов квантового мира в область мира классического; в случае, когда такой прорыв имеет место, классическая система характеризуется той же непредсказуемостью и многовариантностью, которая присуща квантовым объектам. Аналогично, самоорганизация в социальных группах есть свойство социальной системы, находящейся в состоянии нестабильности, устремляться к одному из возможных устойчивых состояний; возникающая при этом многовариантность может быть объяснена как прорыв личного в область социального; поведение социальной системы характеризуется той же непредсказуемостью и многовариантностью, которая присуща свободной воле отдельного человека.
Одним из важных понятий теории динамических систем стало понятие бифуркации. Событийное прочтение бифуркаций таково: в каждой точке бифуркации система как бы обретает новую форму, новую структуру. Еще более естественным выглядит событийное истолкование некоторых «маршрутов» перехода к хаотическому поведению. Бифуркации, за которыми стоят флуктуации, делают движение необратимым. Система превращается в исторический объект, так как ее дальнейшая эволюция зависит от того, по какому маршруту она пошла в точке бифуркации.
Каков наш мир: событиен ли он или процессуален, и каковы причины наблюдающейся в нашем мире необратимости и многовариантности? Вывод, таков: мир событиен, событиям внутренне присуща многовариантность, отсутствие жесткого детерминизма делает невозможным обратить события вспять, что делает наш мир необратимым.

2.4.3. Необратимость – неустранимое свойство реальности.
Стрела времени
На существование парадокса времени было обращено внимание почти одновременно с естественнонаучной и философской точек зрения в конце XIX века. В работах философа Анри Бергсона время, или «длительность», играют главную роль при обсуждении взаимоотношений между человеком и природой, а также пределов науки. Наука успешно развивалась только в тех случаях, когда ей удавалось свести происходящие в природе процессы к монотонному повторению. Но всякий раз, когда наука пыталась описывать созидающую силу времени, возникновение нового, она неизбежно терпела неудачу. Согласно Бергсону, наше понимание природы должно опираться не на объекты, выделенные наукой вследствие их повторяющегося временного поведения, а на наш субъективный собственный опыт, который является в первую очередь и по большей части опытом длительности и творчества. Проблема времени была частью нового осознания становления как фундаментальной категории умопостигаемости.
В XIX веке возникли две концепции времени. Одна из них восходит к динамике, другая – к термодинамике. С точки зрения классической динамики время отнюдь не означает становления. Возникло противоречие теорий: обратимые во времени законы динамики против второго начала термодинамики, связанного с необратимой эволюцией к равновесию. Из классической динамики вытекает отрицание стрелы времени. Принцип, которым руководствовались Галилей, Гюйгенс был явно сформулирован Лейбницем, который назвал его «принципом достаточного основания». Этот принцип утверждает, что в природе «полная» причина любого превращения эквивалента его «полном» следствию. До Больцмана принцип достаточного основания традиционно приравнивался детерминистической связи между причиной и следствием. Эквивалентность между причиной и следствием, требуемая принципом достаточного основания, является важнейшим исходным пунктом.
Обратимых процессов в мире не бывает. Мы живем в «невероятном» мире, и «стрела времени», указывающая на различия между прошлым и будущим – следствие из этого факта. Почему все выглядит так, будто одна единственная стрела времени управляет всем наблюдаемым миром? Открытие самоорганизации, детерминированного хаоса указывают направление науки с ориентированным временем, свободной от парадокса времени, квантового парадокса и космологического парадокса.
Пространство и время в греческой натурфилософии
Наиболее видные представители античного естествознания – Демокрит и Аристотель – высказали следующие суждения о пространстве и времени.
Демокрит считал, что все природное многообразие состоит из мельчайших частиц материи – атомов, которые двигаются в пустом пространстве. Поэтому атомы и пустота являются первоначалами мира, и пустота — это особый род бытия. Пустое пространство Демокрита – арена действия атомов, некий «ящик», в котором они заключены и который может существовать независимо от атомов. пространство является бесконечным, и атомы двигаются в нем бесконечное время. Наряду с бесконечным пространством атомисты рассматривали и дискретные единицы пространства – амеры, которыми характеризовали пространственный минимум, занимаемый минимумом материи – атомом.
Таким образом, у Демокрита мы сталкиваемся с двумя пространствами: непрерывным физическим пространством как вместилищем материи в целом и дискретным пространством как масштабной единицей протяженности единицы материи – атома.
В соответствии с атомической концепцией пространства Демокрит решал и вопросы о природе времени и движения. В дальнейшем они были развиты Эпикуром, который исходил из дискретного характера пространства и времени. Рассматривая равномерное движение, Эпикур считал, что в процессе перемещения атомы проходят один «атом» пространства за одни «атом» времени.
Аристотель больше внимания уделял анализу существования времени, затем трансформировал его в вопрос о существовании делимого времени. Наконец, уделяя основное внимание взаимосвязи времени и движения, он показал, что время немыслимо, не существует без движения. Аристотель указывал, что понятие времени вырабатывалось в результате наблюдений реальных процессов:
«…мы время распознаем, когда разграничиваем движение, определяя предыдущее и последующее, и тогда говорим, что протекло время, когда получим чувственное восприятие предыдущего и последующего в движении».
В другом месте он говорит, что «мы не только измеряем движение временем, но и время движением, вследствие их взаимного определения, ибо время определяет движение, а движение – время».
Аристотель не отрывал время от процессов, происходящих в реальных телах.
Что касается понятия пространства, то Аристотель также отмечал неразрывную связь движения и пространства. Он нащупывает связь между пространственными и материальными отношениями: пространственные отношения – это материальные отношения, если нет материальных тел – нет и пространства. И если у атомистов пустое пространство является вместилищем материальных атомов, то у Аристотеля «пустоты быть не может».
Позже математическая теория пространства была развита другим древнегреческим ученым Евклидом (Евклидова геометрия), которая в дальнейшем была широко использована многими поколениями ученых при построении физических картин мира.
Пространство и время в классической физике
Идеи Демокрита, приписывающего пустоте особый род бытия, были развиты и в наиболее полной форме воплощены в ньютоновских понятиях абсолютного пространства и абсолютного времени. Согласно Ньютону, абсолютные пространство и время представляют собой самостоятельные сущности, которые не зависят ни друг от друга, ни от находящихся в них материальных объектов и протекающих в них процессов.
И. Ньютонследующим образом определяет абсолютные пространство и время в своих «Началах»: .. .Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.
Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему остается всегда одинаковым и недвижимым.
Пространство и время в специальной теории относительности (СТО)
В специальной теории относительности А. Эйнштейна выявилась взаимозависимость пространственных и временных характеристик объектов, а также их зависимость от скорости движения относительно определенной системы отсчета.
Коренным отличием СТО от предшествующих теорий является признание пространства и времени в качестве внутренних элементов шмжения материи, структура которых зависит от природы самого движения и является его функцией.
Рассматривая относительность длин и промежутков времени, А. Эйнштейн приходит к выводу о том, что понятие одновременности лишено смысла: «Два события, одновременные при наблюдении из одной координатной системы, уже не воспринимаются как одновременные при рассмотрении из системы, движущейся относительно данной».
В связи с этим возникла необходимость преобразований координат (положения тел) и времени от покоящейся системы к системе, равномерно и прямолинейно движущейся относительно первой. Из этих преобразований вытекает отрицание неизменности протяженности и длительности, величина которых зависит от движения системы отсчета.
Выяснились относительность длины и временного промежутка, равноправность пространства и времени, инвариантность пространственно-временного интервала.
Важный вклад в понятие «равноправности» пространства и времени внес Г. Минковский. Он показал органическую взаимосвязь пространства и времени, которые оказались компонентами единого четырехмерного континуума (три пространственных координаты и одна временная). С этой точки зрения разделение пространства и времени не имеет смысла. В соответствии с СТО статусом самостоятельной субстанции природы является единое четырехмерное пространство-время.
Пространство и время в общей теории относительности (ОТО)
Еще более сложную связь, по сравнению с СТО, между пространством и временем, с одной стороны, и движением и материей (массой вещества) – с другой, была установлена А. Эйнштейном в рамках созданной им общей теории относительности (ОТО).
Оказалось, что наличие в пространстве материальных тел (масс тел) приводит к изменению структуры пространства и оно искривляется. Поэтому для пространственно-временного описания событий в ОТО необходима другая геометрия пространства – неевклидова геометрия. При разработке ОТО А. Эйнштейн положил основу геометрию искривленного пространства, разработанную ранее немецким математиком Б. Риманом .
Таким образом, в ОТО А. Эйнштейн доказал, что структура четырехмерного пространства-времени определяется распределением масс материи. Сам А. Эйнштейн так определил суть ОТО: раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе в вещами исчезли бы пространство и время.
Следует подчеркнуть, что в ОТО находит наиболее полное воплощение современное представление о пространстве и времени как формах существования материи.
Общая теория относительности – это теория тяготения, теория гравитационного поля. Ее законы проявляются в основном в космических масштабах. Новые свойства искривленного пространства-; времени поставили целый ряд новых вопросов и проблем в космологии и космогонии. Это, например, вопросы однородности и изотропности в искривленном пространстве, вопросы конечности бесконечности Вселенной и ряд других.
Пространство и время в физике микромира
Еще более углубились представления о пространстве и времени в связи с изучением микромира квантовой механикой и квантовой теорией поля, выявившими тесную связь структуры пространства-времени с материей.
Например, по-иному следует понимать пустоту — вакуум. В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов, электронно-позитронных пар и других частиц. На этом уровне вакуум рассматривается как особый вид материи — как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая пустота (вакуум) — это одно из состояний материи.
Квантовая механика была применена к вакууму, и оказалось, что минимальное состояние энергии не характеризуется ее нулевой плотностью. Минимум ее оказался равным уровню осциллятора 0,5 hν.
Допустив скромные 0,5 hν для каждой отдельной волны, — пишет известный академик физик-ядерщик Я. Зельдович, — мы немедленно с ужасом обнаруживаем, что все волны вместе дают бесконечную плотность энергии.
Эта бесконечная плотность энергии пустого пространства таит в ебе огромные возможности, которые еще предстоит освоить физике.
Продвигаясь вглубь материи, там, где определяющую роль играют глюоон-кварковые взаимодействия, становятся совершенно иными пространственно-временные понятия. Специфике микромира не соответетствуют обыденные представления о соотношении части и целого, нарушается пространственная и временная четность, т.е. правое и иное пространственные направления оказываются неэквивалентными. Все эти и многие другие особенности пространства и времени в микромире являются фундаментальными проблемами современной теоретической физики.
2.4.4. Современные взгляды на пространство и время
Ранее мы выяснили, какие из свойств пространства и времени являются универсальными (всеобщими), а какие – специфическими (их всеобщность не доказана). Отнесение к специфическим характеристикам некоторых свойств пространства и времени еще не означает, что где-то опытным путем найдены исключения. Однако логика стремительного развития естествознания последнего столетия свидетельствует о том, что подобные открытия возможны.
Существуют веские основания считать, что на глубинных уровнях микромира пространство и время прерывны и подобно материи квантованы», т.е. складываются из неделимых «порций». Прогнозируемый квант пространства может иметь размер порядка 10–33 см (порядка планковской длины, характеризующей масштаб проявления квантовых свойств), но до реального проникновения в мир таких масштабов современной науке еще далеко.
Немало сомнений возникает и по поводу универсальности пространства, насчитывающего только три измерения, поскольку построены теоретические модели многомерных пространств (в теории супергравитации, например, использовано одиннадцать измерений; пространства-времени).
То же самое можно сказать и о времени. Сейчас уже не считается универсальной характеристикой однонаправленность времени от прошлого к будущему. Так, в модели «пульсирующей Вселенной» предполагается, что ныне наблюдаемое расширение Вселенной может при определенных условиях смениться сжатием. А в описывающих эту фазу ее эволюции математических уравнениях время сменит свой знак с положительного на отрицательный, т.е. как бы «потечет вспять». Имеется и целый ряд других парадоксальных, с нашей точки зрения, явлений.
Универсальные же свойства пространства и времени экспериментально подтверждены более надежно. Специальная теория относительности объединила пространство и время в единое четырехмерное пространственно-временное многообразие (пространство-время). Кроме того, СТО установила зависимость свойств пространства-времени от скорости движения тел.
Общая теория относительности (ОТО) привела к не менее фундаментальному выводу относительно пространства-времени. Его общий смысл таков: метрические свойства пространства-времени определяются распределением и движением тяготеющих масс материи, и наоборот, силы тяготения в каждой точке пространства зависят от: его метрики. Таким образом, пространство и время существуют «сами по себе», а в тесной зависимости от свойств материи.
2.5. Принципы относительности
2.5.1. Принцип относительности в классической механике
Важную роль в развитии естествознания сыграл принцип относительности для механического движения, впервые установленный Г. Галилеем и окончательно сформулированный в механике И. Ньютоном. Для его понимания потребуется ввести понятие системы отсчета, или координат.
Как известно, положение движущегося тела в каждый момент времени определяется по отношению к некоторому другому телу, которое называется системой отсчета и с которым может быть жестко связана система координат. Таким образом, механическое движение тогда относительно, и его описание зависит от того, по отношения к какой системе координат оно рассматривается.
Среди систем отсчета особо выделяются инерциальные системы, которые находятся друг относительно друга либо в покое, либо равномерном и прямолинейном движении.
Смысл принципа относительности Галилея заключается в том, что во всех инерциальных системах отсчета законы классической механики имеют одинаковую математическую форму записи.
По существу, это означает, что из совокупности инерциальных систем невозможно выделить какую-либо одну преимущественную систему. Например, на судне, движущемся равномерно, тело, выпущенное из рук, падает вертикально вниз независимо от того, стоит судно или движется; вода, налитая в сосуд, на движущемся судне, как и в покое, имеет горизонтальную поверхность; на движущемся корабле при выстреле пуля летит столько же времени от носа к корме, сколько от корме к носу, и т.д.
Для описания механических движений в разных инерциальных системах координат обычно пользуются так называемыми преобразованиями Галилея, которые выражают связь координат материальной точки в условно движущейся (х', у', z') со скоростью V в момент времени t и условно неподвижной (x,y,z) системах координат
Очевидно, что координаты точки А в движущейся системе (х', у', z') связаны с координатами этой же точки в неподвижной системе (х,y,z) следующими соотношениями х' = x-Vt; у' = у, z' = z.
В классической механике, например, закон сложения скоростей выглядит следующим образом. Пусть материальная точка А движется в системе координат х', у', z' со скоростью U, а сама система координат (х', у', z') движется со скоростью V относительно системы координат (х, у, z). Тогда в системе координат (x,y,z) точка А будет двигаться со скорость W = U + V . Действительно, по определению скорость U =
х = х ±Vt (преобразование Галилея).
Из преобразований Галилея следует, что при переходе от одной инерциальной системы к другой такие величины, как координаты тела, скорость, импульс, кинетическая энергия, изменяются. А такие величины, как время, масса, ускорение, сила, и, следовательно, все законы Ньютона, при подобных преобразованиях остаются неизменными, т.е. инвариантными. Это и отражено в механическом: принципе относительности Галилея.
2.5.2. Специальная теория относительности
После создания электродинамики, доказавшей существование в природе еще одного вида материи – электромагнитного поля, которое математически описывается системой уравнений Максвелла, возник естественный вопрос: распространяется ли принцип относительности Галилея на электромагнитные явления, т.е. сохраняется ли вид уравнений Максвелла при рассмотрении их в различных инерциальных системах координат. Оказалось, что если воспользоваться преобразованиями координат Галилея, то вид уравнений Максвелла не сохраняется. Это приводило к далеко идущим выводам, в частности, к фундаментальному выводу о том, что законы; движения двух материальных субстанций – вещества и поля – существенно различны. В виду важности этого обстоятельства начался период длительного и всестороннего рассмотрения данного вопроса, как в части экспериментального подтверждения такого заключения, так и в части анализа уравнений Максвелла.
Одно из направлений исследований уравнений Максвелла, проведенных Лоренцем, показало, что можно формально добиться сохранения вида уравнений Максвелла при переходе от одной (х,у,z, t) к другой (х', y',z',t') инерциальной системе координат, если преобразование координат и времени произвести в соответствии со следующей схемой, которую сейчас называют преобразованиями Лоренца:
В дальнейшем оказалось, что соотношения Лоренца на самом деле имеют очень глубокое физическое содержание, а вначале преобразования Лоренца только вызвали целый ряд недоуменных вопросов. Например, из формул Лоренца следовало, что:
пространственные и временные преобразования не являются независимыми: в преобразование координат входит время, а в преобразование времени – координаты, что было совершенно непонятно;
время в разных системах координат течет по-разному.
Все возникшие противоречия разрешил А. Эйнштейн, создав специальную теорию относительности. Он выдвинул новую радикальную идею о связи пространства и времени. Найденное Эйнштейном решение проблемы потребовало отказа от прежних представлений о том, что пространство и время – совершенно различные и не связанные друг с другом понятия. С точки зрения Эйнштейна, реальный мир представляет собой не трехмерное, а четырехмерное пространство, поскольку оно также должно включать время, так как пространственные и временные координаты неразрывно связаны друг с другом и равноправны, образуя четырехмерное пространство-время.
Затем анализ принципа относительности Галилея привел А. Эйнштейна к выводу, что этот принцип является одним из фундаментальных законов, который применим не только к механическим, но и к любым другим явлениям природы – тепловым, электромагнитным, оптическим и т.д. В результате Эйнштейн сформулировал два постулата, легшие в основу специальной теории относительности:
Принцип относительности, который гласит, что в любой инерциальной системе все физические законы описываются одинаковым образом.
Принцип постоянства скорости света, утверждающего, что во всех инерциальных системах скорость света с одинакова и равна с= 108 м/с.
Первый принцип, по сути, распространяет принцип относительности Галилея для законов механики на законы электродинамики.
Второй принцип основан на уже достаточно хорошо установленном экспериментальном факте постоянства скорости света независимо от характера относительного движения источника и приемника света.
Специальная теория относительности Эйнштейна привела к необходимости пересмотра всех фундаментальных понятий естествознания – пространства и времени, материи и движения. Оказалось, что: с увеличением относительной скорости уменьшаются линейные размеры тел вдоль направления движения и увеличивается масса по законам:

где L0 и М0 – линейные размеры и масса тела в состоянии покоя.
Независимость скорости света ни от направления распространения, ни от скорости источника ставит точку в спорах относительно существования «мирового эфира», возмущениями которого являются электромагнитные волны. Таким образом, инвариантность скорости света является существенным подтверждением принципа относительности.
Установлена новая фундаментальная связь между энергией массой материальных тел, выражающаяся соотношением Е = тс2.
Из СТО, как видно, следует, что время, линейные размеры и масса тел являются относительными. Их величина зависит от того, в какой инерциальной системе координат мы их рассматриваем.
Оказывается, время в разных системах отсчета течет по-разному, а это значит, промежуток времени между какими-либо двумя событиями будет зависеть от выбора системы координат, и, следовательно, события, одновременные в одной инерциальной системе координат, будут не одновременными в других системах отсчета.
Как и в механике Ньютона, в СТО считается, что пространстве однородно и изотропно, а время однородно. Но если в механике Ньютона пространство и время не были связаны между собой, то в СТО они оказываются взаимосвязанными, образуя единое четырехмерное пространство-время.
Одно из следствий СТО – новый (по сравнению с классической механикой) закон сложения скоростей. Основанная на инвариантности скорости света специальная теория относительности приводит к интересным результатам, которые подтверждаются практикой. Прежде всего, это «парадокс близнецов», а также тот факт, что скорость сигнала, несущего информацию, не может превышать скорость света.
Из закона сложения скоростей следует, что если скорость света в какой-либо системе координат равна с, то она будет такой же и ппюсительно любой другой инерциальной системы координат. Действительно, если Ух=с и F0=c, то Vx >с, т.е. при сложении скоростей никогда не может получиться скорость больше скорости света. Таким образом, скорость света является максимально возможной скоростью в природе.
Из приведенных соотношений относительно длины, времени, массы видно, что эффекты СТО могут быть заметны только при скоростях, близких к скорости света, если же V, т.е. V/с «1, то так называемые релятивистские эффекты становятся малы, ими можно пренебречь и тогда релятивистская механика Эйнштейна переходит в классическую механику Ньютона.
В заключение следует подчеркнуть, что все выводы СТО в настоящее время нашли полное экспериментальное подтверждение.
2.5.3. Общая теория относительности
В СТО законы формулируются для инерциальных систем, движущихся с постоянной скоростью. В ОТО рассматриваются любые системы отсчета, в том числе и движущиеся с ускорением. Таким образом, ОТО обобщила СТО также на ускоренные системы. Главное приложение ОТО нашла в изучении движения ускоренных тел в гравитационных полях. Иногда ОТО называют теорией тяготения, или гравитации, поэтому она нашла наибольшее применение в вопросах космогонии.
Из ОТО был получен ряд важных выводов:
1) свойства пространства-времени зависят от движущейся материи, в частности от массы тел. вблизи, тел, обладающих значительной массой, пространство-время искривляется, так что в гравитационном поле распределенных масс пространство становится неевклидовым, а ход времени вблизи тел замедляется;
2) луч света должен искривляться в поле тяготения;
3) частота света в результате действия поля тяготения дол: изменяться. В результате этого эффекта линии солнечного света, под действием гравитационного поля Солнца должны смещаться в сторону красного спектра по сравнению со спектрами соответсвующих земных источников.
Все это было настолько принципиально ново, что для утверждения ОТО нужна была ее тщательная экспериментальная проверка.
Вскоре нашло подтверждение отклонение луча света в гравитационном поле Солнца, которое было обнаружено во время солнечного затмения 29 мая 1919 г. в полном согласии с предсказанием ОТО.
Красное смещение в спектрах небесных тел также было обнаружено в 1923—1926 гг. при изучении Солнца, а в 1925 г. — при наблюдении спектра спутника Сириуса.
Экспериментальное подтверждение выводов ОТО явилось ее триумфом. ОТО произвела переворот в космологии. На ее основе появились различные модели Вселенной.
2.6. Принципы симметрии и законы сохранения
2.6.1. Симметрия: понятие, формы и свойства
Понятие симметрии. Как известно, в физике имеется целый ряд законов сохранения, например закон сохранения массы вещества, энергии, количества движения, момента количества движения, электрического заряда.
Законы сохранения в науке играют особую роль. Они отражают стабильность природы. Закон сохранения энергии обусловливает постоянство энергии, закон сохранения импульса определяет незыблемость движения, неуничтожимость поступательного движения, закон сохранения момента импульса – незыблемость вращательного движения, закон сохранения электрического заряда – кулоновское взаимодействие, которое, наряду с гравитационным, слабым и сильным взаимодействиями, определяет структуру мира. Поэтому принципиально важно знать причину появления в физике этих законов.
В математике известен целый ряд так называемых инвариантных преобразований (например, в механике – преобразования Галилея, в электродинамике – преобразования Лоренца). В результате инвариантных преобразований Галилея сохраняются законы механики Ньютона, а в результате преобразований Лоренца в электродинамике сохраняется вид уравнений Максвелла в различных инерциальных системах координат
Во всех перечисленных случаях – различного рода физических процессах и математических преобразованиях – некоторые ветчины или параметры остаются неизменными. Оказывается, что тем законам в физике или преобразованиям в математике соответствует некоторая симметрия.
С другой стороны, установление некоторой симметрии в физике и математике ведет к установлению новых законов сохранения или инвариантных преобразований. Поэтому выявление и установление симметрии – одна из наиболее эффективных методологических основ открытия новых законов сохранения в природе. Особенно успешно подобный путь познания законов сохранения используется в области изучения физики микромира, физики элементарных частиц, где исследования прямыми методами затруднены в силу малых размеров физических объектов.
В связи с исключительной важностью принципов симметрии рассмотрим подробнее, что понимается под симметрией и почему она играет столь важную роль в современной науке. Что же такое симметрия?
Симметрия (от греч. – соразмерность) в широком смысле – инвариантность (неизменность) структуры, свойств, формы материального объекта относительно его преобразований.
Согласно современным представлениям, симметрию можно определить примерно так: симметричным называется такой предмет, который можно как-то изменять, получая в результате то же, с чего начали (Р. Фейнман).
Таким образом, симметрия предполагает неизменность объекта (каких-либо свойств объекта) по отношению к каким-либо преобразованиям или операциям, выполняемым над объектом.
Понятие симметрии имеет определенную «структуру», состоящую из трех факторов:
наличие объекта или явления, симметрия которого рассматривается;
процедура изменения (преобразования), по отношению к которому рассматривается симметрия;
установление инвариантности (неизменности, сохранения) каких-либо свойств объекта, выражающей рассматриваемую симметрию.
Подчеркнем, что инвариантность существует не сама по себе, не вообще, а лишь по отношению к определенным преобразованиям. С другой стороны, изменение (преобразование) представляет интерес постольку, поскольку что-то при этом сохраняется. Иными словами, без изменений не имеет смысла рассматривать сохранение, равно как без сохранения исчезает интерес к изменениям.
Формы симметрии. Симметрия выражает сохранение чего-либо каких-либо изменениях, другими словами, сохранение чего-либо, несмотря на изменения. Таким образом, понятие симметрии основывается на на диалектике сохранения и изменения. В физике общепринято выделять две формы симметрии: геометрическую и динамическую.
Симметрии, выражающие свойства пространства и времени, относят к геометрической форме симметрии.
Примерами геометрических симметрии являются: однородное пространства и времени, изотропность пространства, пространственная четность, эквивалентность инерциальных систем отсчета.
Симметрии, непосредственно не связанные со свойствами пространства и времени, выражающие свойства определенных физических взаимодействий, относят к динамической форме симметрии.
Примерами динамических симметрии являются симметрии электрического заряда. Вообще говоря, к динамическим симметриям относят симметрии внутренних свойств объектов и процессов. Так что геометрические и динамические симметрии можно рассматривать как внешние и внутренние симметрии.
К основным формам геометрической симметрии, прежде всего, относятся:
зеркальная симметрия (симметрия отражения);
поворотная симметрия (центральная симметрия);
трансляционная симметрия (симметрия повторения).
Зеркальной называют симметрию, имеющую плоскость, линию, или временной раздел двух совершенно одинаковых относительно, друг друга частей одного целого (например, цветной узор крыльев бабочки).
Поворотная симметрия предполагает наличие некоторого центра, относительно которого происходит многократный поворот одного итого же структурного фрагмента. В зависимости от повторяющегося кругового сектора а (в угловых градусах) определяется порядок поворотной симметрии п. Например, для снежинки с α = 60° порядок поворотной симметрии п = 6.
Трансляционной симметрией называется многократное повторение одного и того же фрагмента структуры в пространстве или во времени. Примером трансляционной симметрии может служить любой орнамент.
Примером симметрии в неживой природе являются кристаллические структуры твердых тел. В 1890 г. русский ученый Фёдоров описал все возможные сочетания элементов в пространстве, причем доказал, что таких пространственных групп симметрии – 230. Используя математический аппарат, Фёдоров как бы пересчитал все возможные пространственные решетки задолго до того, как с помощью рентгеноструктурного анализа была подтверждена истинность этих расчетов.
Свойства симметрии. Особое внимание к вопросам симметрии было привлечено после того, как немецкий математик Э. Нётер сформулировала в 1918 г. фундаментальную теорему теоретической физики, установившую связь между симметрией свободного пространства, симметрией времени и законами сохранения в механике.
Пространство можно считать свободным, если вблизи нет тел большой массы. Таковым является пространство на значительном расстоянии от Земли и других планет и звезд.
Важным свойством свободного пространства являются однородность и изотропность. Под однородностью пространства понимают тот факт, что в этом пространстве нет особых точек, обладающих особыми свойствами. Из однородности пространства вытекает закон сохранения импульса, из изотропности пространства – закон сохранения момента импульса.
Под однородностью времени понимается тот факт, что любые явления, происходящие в разное время, но при одних и тех же условиях, протекают совершенно одинаково. Из этого утверждения вытекает закон сохранения энергии.
Важным подтверждением универсальной значимости законов сохранения является то, что они вытекают из самых общих представлений о симметрии, с одной стороны, а также законов движения и взаимодействий – с другой.
В частности, Э. Нётер при доказательстве своей знаменитой теоремы провела исследование широко используемого в аналитической механике интеграла действия:

где L (q, q, t) – функция Лагранжа, с помощью которой описывается некоторая система; q,q,t – соответственно обобщенные координаты (скорости) и время. В соответствии с вариационным принципом действие S имеет экстремум вблизи истинной траектории, вариация действия вдоль истинной траектории остается неизменной, т.е. δS = 0. Вариации действия δS зависят от вариации времени δt и вариации координат δq. Дифференцируя подинтегральное выражение по t и q и приравнивая его к нулю, поскольку δS = 0, имеем сумму двух дифференциалов

Если рассматривать только изменение по времени, то получим, что энергия системы (выраженная через функцию Лагранжа и ее производные) есть величина постоянная. Тем самым симметрии преобразования времени следует закон сохранения механической (кинетической плюс потенциальной) энергии.
Если преобразование не затрагивает времени (δt = 0), а учитывается только однородный пространственный сдвиг (δq=0), то получим в качестве сохраняющейся величины вектор импульса материальной системы (который следует из преобразованной функции Лагранжа). Аналогично выводится закон сохранения момента импульса. Кроме того, во всех процессах, происходящих в мире элементарных частиц, выполняется также закон сохранения электрического заряда. Принцип симметрии, лежащий в основе этого закона сохранения, оказывается более тонким, нежели рассмотренные выше симметрии физических законов относительно пространственно-временных преобразований, выражающихся в виде законов сохранения энергии, импульса, момента импульса.
Закон сохранения электрического заряда является следствием так называемой калибровочной инвариантности. Калибровочная инвариантность – один из важнейших принципов теории поля. Можно показать, что если записать интеграл действия S для системы «заряд–поле» и провести калибровочное преобразование, то действие остается неизменным, а вариация действия будет равна нулю, если заряд является постоянной величиной.
Инвариантность действия при преобразовании калибровки будет иметь место при условии сохранения заряда, т.е. симметрия калибровочного преобразования полей напрямую связана с законом сохранения заряда. Эта общая закономерность справедлива для полей любого характера.
Исследование реакций с участием элементарных частиц и античастиц и процессов их распада привело к открытию некоторых новых свойств симметрии, в том числе симметрии относительно зарядового сопряжения. Если в уравнении какой-либо реакции каждую частицу заменить на античастицу, то получится уравнение, описывающее новую реакцию. Эта операция называется зарядовым сопряжением.
Еще большее значение симметрия играет в квантовой механике. Если здесь установлен принцип какой-либо симметрии, то окажется, что он всегда позволяет вывести соответствующий закон сохранения.
Возникает вопрос, почему симметрия играет такую исключительную роль в установлении законов сохранения, какое значение она имеет в отражении свойств самой природы. Для этого необходимо обратиться к истории изучения вопроса о симметрии в природе.
2.6.2. Принципы симметрии и законы сохранения
Что такое симметрия? Слово это греческое и переводится как «соразмерность, пропорциональность, одинаковость в расположении частей». Часто проводятся параллели: симметрия и уравновешенность, симметрия и гармония, симметрия и совершенство. Согласно современным представлениям, симметрию можно определить примерно так: «Симметричным называется такой предмет, который можно как-то изменять, получая в результате то же, с чего начали» Таким образом, симметрия предполагает неизменность объекта (каких-то свойств объекта) по отношению к каким-нибудь преобразованиям, каким-нибудь операциям, выполняемым над объектом.
Молекулы, из которых построены живые организмы, зеркально асимметричны, т.е. киральны. – от греческого «кир», что означает «рука». Специфика живой материи – киральная чистота молекул.
Возникновение жизни обусловлено нарушением существовавшей до того зеркальной симметрии, образованием кирально чистых молекул, в виде Большого своеобразного биологического взрыва. Это была бифуркация, акт самоорганизации материи.
Понятие симметрии имеет определенную «структуру» состоящую из трех факторов: объект или явление, симметрия которых рассматривается; изменение (преобразование), по отношению к которому рассматривается симметрия; инвариантность (неизменность, сохранение) каких-то свойств объекта, выражающая рассматриваемую симметрию. Инвариантность существует не сама по себе, не вообще, а лишь по отношению к определенным преобразованиям. С другой стороны, изменения (преобразования) представляют интерес постольку, поскольку что-то при этом сохраняется. Иными словами, без изменений не имеет смысла рассматривать сохранение, равно как без сохранения исчезает интерес к изменениям. Симметрия выражает сохранение чего-то при каких-то изменениях или, иначе, сохранение чего-то, несмотря на изменения.
Необходимо отметить взаимное влияние друг на друга одновременно происходящих необратимых процессов. Существует принцип симметрии Кюри, который гласит: «Если условия, однозначно определяющие какой-либо эффект, обладают некоторой симметрией, то результат их действия не нарушит эту симметрию». Поэтому формально все неравновесные процессы разделяют на скалярные (химические реакции), векторные (теплопроводность, диффузия) и тензорные (вязкое трение). В соответствии с принципом симметрии величины разных размерностей не могут быть связаны друг с другом. Так скалярная величина (химическое сродство) не может вызвать векторный поток (теплопроводность).
«Закон есть идентичное в явлениях». Предположим, что берем провод с некоторым определенным сопротивлением, прикладываем электрическое напряжение и наблюдаем явление – по проводнику течет ток. Можно многократно наблюдать данное явление – с разными проводами, сопротивлениями, гальваническими элементами. И всякий раз будет иметь место нечто идентичное, нечто инвариантное – это нечто выражается законом Ома: I = V/R. Таким образом, в самом понятии закона заложена симметрия. Каковы свойства симметрии физических законов?
1) Симметрия по отношению к переносам во времени означает, что законы природы со временем не меняются. Симметрия физических законов относительно переносов во времени означает однородность времени, то есть все моменты времени физически равнозначны, любой из них может быть выбран в качестве начала отсчета.
2) Симметрия по отношению к переносам в пространстве означает, что законы природы не зависят от выбора места - они одинаковы в Москве и Вашингтоне. Имея в виду симметрию физических законов, говорят об однородности пространства, т.е. физической равнозначности всех точек пространства.
3) Симметрия по отношению к поворотам в пространстве означает, что в пространстве нет физически выделенных направлений – пространство изотропно.
4) Симметрия по отношению к переходу из одной инерциальной системы отсчета в другую есть не что иное, как сформулированный А.Эйнштейном принцип относительности.
5) Симметрия относительно зеркального отражения означает, что физические законы не меняются при замене левого на правое, а правого на левое.
Немецкий математик Эмми Нетер доказала теорему, сущность которой заключается в утверждении, что различным симметриям физических законов соответствуют определенные законы сохранения. Связь между законами сохранения и симметрией законов природы можно сформулировать следующим образом.
Закон сохранения энергии есть следствие однородности времени или, иначе говоря, следствие симметрии законов природы по отношению к переносам во времени. Энергия – физическая величина, сохранение которой обусловлено указанной симметрией.
Закон сохранения импульса есть следствие однородности пространства (следствие симметрии законов природы по отношению к переносам в пространстве). Импульс – физическая величина, сохранение которой связано с однородностью пространства.
Закон сохранения момента импульса есть следствие изотропности пространства (следствие симметрии законов природы по отношению к поворотам) Момент импульса – величина, сохранение которой связано с изотропностью пространства.
Трехмерность пространства предопределяет векторную природу импульса и момента импульса; законы сохранения этих величин – векторные законы. Одномерность времени предопределяет скалярную природу энергии и соответствующего закона сохранения.
Законы природы неинвариантны относительно, например, преобразования подобия, т.е. преобразования, связанного с изменением пространственного масштаба. Геометрический принцип подобия не применим к физическим законам. И.Пригожин описал процесс самоорганизации в неравновесных системах через нарушение симметрии в точках бифуркации.
2.6.3. Диалектика симметрии и асимметрии
С давних времен симметрия форм, наблюдаемых в природе, производила на человека сильное впечатление. Он видел в симметрии порядок, гармонию, совершенство, вносимые всемогущим творцом в изначальный хаос.
Убеждение в том, что симметрия есть не что иное, как проявление мудрости творца, просуществовало фактически вплоть до нашего столетия. Очарование симметрией, мистическое преклонение перед ней сменилось пониманием действительного содержания симметрии.
Современный взгляд на симметрию: идея сохранения, выявление общего в объектах или явлениях, ограничение числа возможных вариантов. Симметрия связана с сохранением. Она выделяет в нашем изменчивом, динамичном мире инварианты, своеобразные «опорные точки». Тем самым в мир вносится порядок.
Симметрия выделяет общее, как в объектах, так и в явлениях. Мир многообразен, но в то же время он един; в его разнообразных проявлениях присутствуют черты общности. Параллель симметрия-общее, связана с параллелью симметрия-сохранение – обе выходят на законы сохранения. Симметрия предопределяет необходимость: она действует в направлении сокращения числа возможных вариантов. Симметрия накладывает ограничения на разнообразие структур молекул и кристаллов. Возможны лишь те процессы, которые согласуются с законами сохранения. Например, закон сохранения энергии делает невозможным вечный двигатель, а закон сохранения импульса «не позволяет самого себя поднять за волосы».
Итак, с идеей симметрии органически связаны идеи сохранения, общности, тождества и необходимости. Реальный мир – это мир, основанный на симметрии и асимметрии.
Связь между симметрией и вероятностью можно усмотреть, из формулы в теории вероятности Шеннона. Симметричному состоянию соответствует меньшая информация. Можно утверждать, что с повышением симметрии состояния возрастает его энтропия. Большей симметрии соответствует большая вероятность.
Симметрия действует в направлении ограничения числа возможных вариантов поведения систем. Необходимость действует в том же самом направлении. Асимметрия действует в направлении увеличения числа вариантов; в том же направлении действует случайность, но случайности создают новые возможности, порождают новые альтернативы.
Сокращая число возможных вариантов, симметрия и необходимость вносят в мир порядок (это мы оцениваем положительно). В то же время симметрия и необходимость, сокращая число альтернатив, могут привести к безвыходной ситуации, завести в тупик, создать обреченность, потерять интерес к жизни (мы это оцениваем отрицательно). В подобных «тупиковых» ситуациях жизненно важна спасительная случайность, способная разрушить симметрию, создать неожиданный выход из тупика.
Создавая новые возможности, новые альтернативы, асимметрия и случайность обеспечивает развитие, способствуют творческому поиску, появлению новой информации (мы оцениваем это положительно). В то же время асимметрия и случайность вносят дезорганизацию, увеличивают степень беспорядка в мире (оцениваем отрицательно). Обилие альтернатив, разнообразных вариантов может стать чрезмерным – тогда на помощь приходит упорядочивание в лице симметрии и необходимости.
Так и живем, находясь под воздействием, с одной стороны, симметрии и необходимости, с другой – асимметрии и случайности, «жизнь прожить – не поле перейти» и не каждому одинаково удается лавировать между этих «двух огней».
Красота как путеводная нить к истине, «красота спасет мир?»
Красота – понятие туманное, однако нет сомнений в том, что именно она служит источником вдохновения ученых. В некоторых случаях, когда дальнейший путь не ясен, именно математическая красота и изящество ведут ученых к истине. Между наукой и искусством существует множество параллелей, которые сразу же бросаются в глаза. Подобно художникам, каждый ученый имеет свой неповторимый стиль. Представления ученых о том, какой должна быть хорошая научная теория, удивительно схожи с аналогичными воззрениями представителей искусства. Корректной считается та теория, которая предположительно допускает экспериментальную проверку.
Можно ли из этого сделать вывод, что по отношению к асимметричным условиям вообще не может быть законов и что законы действуют только при наличии симметричных условий? Нет, нельзя.
Следует признать истинным и другой вывод: асимметричности условий не исключает существования закономерностей. Не исключаем асимметричность условий и инвариантности законов. Обоснованность этого положения в том, что симметрия – не единственны источник инвариантности, что инвариантность законов обеспечивается теми связями, которые входят в их содержание.
Таким образом, изучение связи между симметрией, асимметрией и законом дает возможность более глубоко представить и содержание этих категорий, и их роль в нашем познании.
История формирования понятия «симметрия» в науке начиналась с понимания ее как «однородность, соразмерность, пропорциональность, гармония». Философское значение принципов симметрии воспринималось как наиболее общая форма выражения принципа детерминизма. Принцип причинности имеет симметрический аспект: симметрия причин сохраняется в симметрии следствий.
Использование понятия «симметрия» рационально в двух значениях: во-первых, равновесие, во-вторых, нечто пропорциональное.
Симметрия объектов и симметрия у законов природы наблюдалась людьми в ревности, в частности при оражении объектов от глади вод. Ощущение симметрии отражения связывалось со сменой правого на левое и наоборот. То есть свойства зеркальной симметрии были изучены еще в древности. Симметрия кристаллизации льда, снега уже не относятся к зеркальной симметрии, также была известна в древности.
Симметрия объектов: объект является симметричным, если над ним можно произвести некоторые операции, в результате которых объект будет выглядеть точно так же, как и прежде сформулировал (Г. Вейль). В результате сформировалась классическая симметрия с основными понятиями симметрии и геометрии природных форм: ось симметрии, плоскость симметрии, центр симметрии. Операции симметрии: двустороннее отражение, повороты фигур вокруг определенных осей, трансляция и т.д. Все элементы симметрии конечных фигур встречаются и на бесконечных.
Позднее сформировалась криволинейная симметрия (гомология), симметрия подобия, многоцветная симметрия. Введено понятие об асимметрии.
Повторяемость видов симметрии в неживой и живой материи. Основные виды классической симметрии в природе: зеркальная (билатеральная), радиально-лучевая, шаровая. Основной закон, объясняющий проявление симметричности природных тел, закон Пьера Кюри: симметрия тела формируется под воздействием симметрии среды (на Земле это, прежде всего, симметрия сил земного тяготения). Наиболее вероятная эволюция форм симметрии: симметрия шара, двусторонняя симметрия, радиально-лучевая.
Симметрия в неживой и живой природе. Идеи Л. Пастера и В.И. Вернадского об отличии симметрии живых организмов от косной материи: преобладание в живой материи либо левых (в аминокислотах), либо правых изомеров (ДНК-РНК) - дисимметрия в живой природе, запрет на наличие пятой оси симметрии в неживой материи.
Симметрия в физике – свойство физических законов, детально описывающих поведение систем, оставаться инвариантными (неизмененными) при определенных преобразованиях, которым могут подвергнуться входящие в них величины.
Явные симметрии, непосредственно наблюдаемые, например симметрии пространства и времени или выводимые из законов сохранения.
Скрытые симметрии: скрытость симметрии исходной ситуации, возникающая после неустойчивого симметричного состояния.
Принципы и законы симметрии. Пространственно-временные, геометрические или внешние и связанные с ними законы сохранения.
1. Сдвиг времени, т.е. изменение начала отсчета, времени не меняет физических законов. Время однородно. Из инвариантности физических законов относительно этого преобразования вытекает закон сохранения энергии.
2. Сдвиг системы отсчета пространственных координат не меняет физических законов. Однородность пространства. Из этой симметрии вытекает закон сохранения импульса.
3. Поворот системы отсчета пространственных координат оставляет физические законы неизменными. Изотропность пространства. Закон сохранения момента импульса.
4. Законы природы одинаковы во всех инерциальных системах отсчета. Принцип относительности. Закон сохранения скорости движения центра масс изолированной системы.
5. Фундаментальные физические законы не изменяются при обращении знака времени. Все соответствующие процессы в природе обратимы во времени. Необратимость, наблюдаемая в макромире, имеет статическое происхождение и связана с неравновесным состоянием Вселенной.
6. Зеркальная симметрия природы: отражение пространства в зеркале не меняет физических законов.
7. Замена всех частиц на античастицы (операция зарядового сопряжения) не изменяет характера процессов природы.
Иерархия принципов симметрии в физике. Зеркальная симметрия и зарядовое сопряжение сохраняются только при сильных и электромагнитных взаимодействиях. При слабых взаимодействиях эти симметрии нарушаются.
Внутренние симметрии, описывающие специфические свойства элементарных частиц.
1. При всех превращениях элементарных частиц сумма электрических зарядов частиц остается неизменной. Закон сохранения электрического заряда.
2. Закон сохранения бариационного заряда.
3. Закон сохранения лептонного заряда. В современных теориях принимается, что только электрический заряд сохраняется. Барионный и лептонный заряды, возможно, не сохраняются строго, хотя экспериментально это не обнаружено.
4. Изотопическая инвариантность: зарядовая независимость сильных взаимодействий. Гейзенберг: протон и нейтрон – два различных состояния нуклона.
5. Симметрия (закон), связанная с сохранением нового квантового числа, – странности. При сильных и электромагнитных взаимодействиях сумма странностей всех частиц остается неизменной.
Теория взаимодействий элементарных частиц развивается благодаря принципам симметрии. Роль принципа симметрии в познании весьма велика, например, из соображений симметрии Дираком были постулированы античастицы, Д.И. Менделеевым сформулирован периодический закон и т.д. Общенаучность принципов симметрии многократно подтверждается в таких научных методах как аналогия, анализ, синтез, моделирование, принцип подобия.
2.7. Взаимодействие, близкодействие, дальнодействие
2.7.1. Концепции близкодействия и дальнодействия
Дальнодействие. После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие электрических заряженных тел, возник вопрос, почему физические тела, обладающие массой, действуют друг на друга на больших расстояниях через пустое пространство и почему заряженные тела взаимодействуют между собой даже через электрически нейтральную среду?
До введения понятия «поле» на этот вопрос не было удовлетворительного ответа. Долгое время считалось, что взаимодействие между телами может непосредственно осуществляться через пустое пространство, которое не принимает участия в передаче взаимодействий, а передача взаимодействия от тела к телу передается мгновенно, т.е. с бесконечной скоростью. Такое предположение составляет сущность концепции дальнодействия, которую обосновал Р. Декарт. Большинство ученых придерживалось этой концепции вплоть до конца XIX в.
Принцип дальнодействия утвердился в физике еще и потому, что гравитационное взаимодействие макроскопических тел в соответствии с законом всемирного тяготения И. Ньютона малозаметно, – притяжение слишком слабо, чтобы его ощутить. Поэтому экспериментально это было трудно подтвердить или опровергнуть. Только известные опыты Г. Кавендиша были первыми лабораторными наблюдениями гравитационного притяжения.
Близкодействие. Напротив, законы взаимодействия электрически заряженных тел допускали возможность их относительно простой проверки. Вскоре было установлено, что взаимодействие электрических зарядов происходит не мгновенно. Каждая электрически заряженная частица создает электрическое поле, действующее на другие частицы не в тот же момент, а спустя некоторое время.
Иными словами, взаимодействие передается через посредника – электромагнитное поле, а скорость распространения электромагнитного поля равна скорости света. Это составляет суть концепции близкодействия.
2.7.2. Фундаментальные типы взаимодействий
Согласно концепции близкодействия все взаимодействия между юлами (помимо прямого контакта между ними) осуществляются с помощью тех или иных полей (например, взаимодействие в теории тяготения – с помощью гравитационного поля, электромагнитные взаимодействия – с помощью электромагнитных полей). Вплоть до ХХ в. были известны лишь два типа взаимодействий: гравитационное и электромагнитное.
В настоящее время, помимо гравитационного и электромагнитного взаимодействий, известны еще два – так называемые слабые и сильные взаимодействия. Указанные типы взаимодействий в современной физике являются фундаментальными.
Слабое взаимодействие отвечает за внутриядерное взаимодействие, приводящее, например, к распаду нейтрона с испусканием электронов (β -излучение), сильное взаимодействие – за внутринуклонные взаимодействия, оно удерживает кварки внутри нуклонов.
Пространственно действие четырех взаимодействий различно. Так, гравитационные и электромагнитные взаимодействия описываются законами «обратных квадратов расстояний» и проявляются во всем пространстве формально до бесконечности. Сильные взаимодействия проявляются только в пределах размера ядра ~10–13 см, а слабые взаимодействия — на расстояниях в несколько порядков раз меньших размеров ядер.
Относительная сила взаимодействий различна. Если сильное взаимодействие условно принять за единицу, то электромагнитное взаимодействие будет в 102 раз меньше, слабое – в 1010, а гравитационное – в 1038 раз меньше сильного взаимодействия.
И хотя сила взаимодействий существенно различна, ни одним из них пренебрегать нельзя. Каждое взаимодействие может оказывать решающее влияние на процессы в том или ином конкретном случае. Даже такое взаимодействие, как гравитационное, несмотря на свою кажущуюся малость (в 1038 раз меньше сильного взаимодействия) играет, например, доминирующую роль в процессах космического порядка, где присутствуют объекты с огромной массой и большие пространственные масштабы явлений.
Во второй половине XX в. велись интенсивные работы по возможному объединению электромагнитного, слабого и сильного взаимодействий.
Пока что С. Вайнбергу, Ш. Глэшоу и А. Саламу удалось создать единую теорию электрослабого взаимодействия. В соответствии с этой теорией за электрослабые взаимодействия отвечают частицы – кванты электрослабого поля — бозоны W~ и Z0. Вскоре такие частицы были обнаружены экспериментально К. Руббиа и С. ван дер Меером .
Как отмечалось выше, сильное фундаментальное взаимодействие отвечает за связь частиц в ядре, и поэтому часто называется ядерным. Вначале это взаимодействие изучалось в рамках квантовой мезонодинамики. Японский ученый Х Юкава выдвинул идею, что взаимодействие между нуклонами (протонами и нейтронами) в атомных ядрах обусловлено специальными частицами – квантами ядерного поля, названными мезонами. В дальнейшем такие частицы были открыты и получили название π – мезонов.
Следующим этапом развития теории сильных взаимодействий было создание квантовой хромодинамики. Необходимость в создании новой теории объясняется следующим: в дальнейшем было выяснено, что отдельные единицы ядра – нейтроны и протоны – сами состоят из более мелких единиц – кварков, поэтому исследования переместились в область изучения взаимодействий между кварками в нуклонах. По современным представлениям, в соответствии с квантовой хромодинамикой, сильное вздимодействие связано с существованием квантов внутринуклонного поля глюонами. Таким образом, теория сильных взаимодействий – квантовая хромодинамика – описывает взаимодействие кварков и глюонов.
Теорию электрослабых и сильных взаимодействий называют Стандартной моделью макромира.
После того, как была создана единая теория электрослабых взаимодействий, появилась реальная перспектива построения ядерной теории всех трех форм взаимодействий элементарных частиц (программа «Великого объединения»).
А в самое последнее время появились новые идеи, которые открывают, может быть, далекие, но все же реальные перспективы объединения всех известных четырех взаимодействий, включая и гравитационное. Решение этой задачи ознаменовало бы грандиозную научную революцию, которую трудно измерить масштабами всех предшествующих научных революций.
Иными словами, на сегодняшний день мы имеем очень продуктивную исследовательскую программу, дающую направление ее развития, которое ориентированно ведет к единству всех фундаментальных теорий.
Если такая программа будет реализована, то это будет означать что природа, в конечном счете, подчинена действию некой суперсилы проявляющейся в некоторых частных взаимодействиях. Эта суперсила достаточно мощна, чтобы создать нашу Вселенную, наделить ее энергией в соответствующих формах и материей с определенной структурой.
Но суперсила – нечто большее, чем просто сила. В ней материя, пространство-время и взаимодействие слиты в нераздельное гармоническое целое, порождающее такое единство Вселенной, о котором раньше никто и не предполагал. Современная наука в поиске такого единства.
С концепциями взаимодействия в физике тесно связана концепция физического вакуума. По современным представлениям, вакуум – это не «абсолютная пустота», а реальная физическая система, например электромагнитное поле в одном из своих состояний. Более того, согласно квантовой теории поля, из состояния вакуума можно получить все другие состояния поля. Вакуум можно определить как поле с минимальной энергией. В вакууме постоянно протекают сложнейшие физические превращения, например особого рода вакуумные колебания электромагнитного поля, не вырывающиеся из него и не распространяющиеся, однако отчетливо проявляющиеся в физическом эксперименте.
2.8. Состояние, принципы суперпозиции, неопределенности,
дополнительности
Мы часто говорим о том или ином состоянии материи. Например, мы выделяем несколько агрегатных состояний вещества: твердое, жидкое, газообразное, плазма. Говорим о состояниях электромагнитного поля, имея в виду, какие процессы происходят в нем, об энергетических состояниях атома и т.д.
Говоря о газах, мы характеризуем их изотермическим, адиабатическим, изобарическим, изохорическим сотоянием. Говоря о жидкостях, мы характеризуем их состояние ламинарным или турбулентным движением, а состояние твердого тела – наличием или отсутствием кристаллической решетки. Говоря о состоянии плазмы, мы часто имеем в виду наличие тех или иных плазменных частот и.т.д. Состояние определяется параметрами состояния, сохраняющих свои значения при неизменных внешних условиях. Эту величину ввел в науку И. Ньютон. Различают устойчивое (стационарное) и неустойчивое состояние. Переход системы из одного состояния в другое означает процесс. Так, например, в классической термодинамике тепловых процессов предполагается, что параметры состояния, такие как, например, температура должна оставаться постоянной, только при таких условиях рассматриваются тепловые изопроцессы, поясняющие даже работу тепловой машины. Однако непонятно, и ни в каком учебнике по физике не поясняется, как может передаваться тепло от тел одинаковой температуры и может ли вообще работать тепловая машина, если нет флуктуации температуры?
Температура в термодинамическом смысле понимается (определяется) как мера средней статистической скорости молекул вещества. Чтобы обойти эту неопределенность (не сказав большее, – нелепость) проф. Сухановым обосновывается идея неконтролированного воздействия и трансдисциплинарные (над) дисциплинарные идеи. Остается только недоумевать, а есть ли предмет у современного естествознания, который по стихийному подходу авторов многих учебников по дисциплине «Концепции современного естествознания» видимо мыслится как некоторый многоголовый монстр, содержащий предметы (дисциплины), составляющие по всеобщему заблуждению междисциплинарный синтез этого, хотя и ограниченного множества предметов. Все дело в том, что синтез возможен по принципу наложения (суперпозиции) и справедлив лишь для линейных замкнутых систем. Совокупность наук и дисциплин, составляющих современное естествознание, как общеизвестно является нелинейной, открытой, самоорганизующейся системой, для которой принцип суперпозиции несправедлив. Стало быть, имеет место не интеграция ряда дисциплин, не декларируемый междисциплинарный их синтез, и, к сожалению, реализованный во многих учебниках по КСЕ дифференциальный подход к изучению природы по частям, а хотим мы этого, или не хотим в этом курсе имеет место взаимопроникновение, мультидисциплинарное взаимодействие, «эмерджентный нелинейный синтез» с алгоритмом реальности открытых нелинейных систем различной природы (прим. ред.). Этот алгоритм работает в природе, особенно в живой, имеет отношение к естественному отбору, борьбе за существованию к превосходству сложного, и приоритету простого. В этом природу подгонять нельзя, но и оставаться «сторонним наблюдателем» за этим неуправляемым процессом как-то не в правилах человека, поэтому необходимо постижение Природы в дисциплине «Концепции современного естествознания» в соответствии с синергетической парадигмой фундаментальности без отторжения.
2.8.1. Принцип неопределенности
Используемые в квантовой механике волновые функции для описания микрочастиц дают возможность установить вероятность нахождения микрочастиц в том или ином месте пространства в соответствии с принципом неопределенности.
Такое положение связано с двойственностью частиц микромира. С одной стороны, если считать микроструктуру частицей, то она должна быть локализована в пространстве, а если ее считать волной, то она формально занимает все пространство.
Вероятностный характер волновых функций приводит к парадоксальному выводу: если мы какую-то группу параметров микрочастиц можем знать более или менее точно (с небольшой погрешностью), то существует однозначно связанная с ней другая группа параметров, одновременные сведения о которых принципиально получить нельзя. Такими взаимно противоположными, дополнительными, или канонически сопряженными, переменными в микромире являются координаты и скорость (или импульс), энергия, и время, направление и величина момента количества движения, кинетическая и потенциальная энергии напряженность электрического поля в данной точке и число фотонов и др. В общем случае из теории следует, что дополнительными друг к другу являются физические величины, которым в квантовой механике соответствуют некоммутирурующие между собой операторы.
В 1927 г. один из создателей квантовой механики В. Гейзенберг установил фундаментальное положение квантовой теории – принцип неопределенности.
Принцип неопределенности: любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульса одновременно принимают вполне определенные точные значения.
Количественно соотношение неопределенности формулируется следующим образом. Если ∆х – неопределенность значения координаты х – центра инерции системы, а ∆р – неопределенность импульса р, то произведение этих неопределенностей должно быть по порядку величины не меньше постоянной Планка h, т.е. ∆х∆р >h. Ввиду малости h по сравнению с макроскопическими величинами той же размерности действия соотношение неопределенности существенно только для явлений атомных масштабов и не проявляется в опытах с макроскопическими телами.
Из соотношения неопределенности следует, что чем точнее определена одна из величин, входящих в неравенство, тем менее определенно значение другой. Никакой эксперимент не может привести к одновременно точному измерению таких динамических переменных. При этом неопределенность в измерениях связана не с несовершенством экспериментальной техники, а с объективными свойствами микрообъектов. Таким образом, соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам.
2.8.2. Принцип дополнительности
Для описания микрообъектов Н. Бор сформулировал принципиальное положение квантовой механики – принцип дополнительности, который наиболее четко изложил в следующей форме:
Для полного описания квантово-механических явлений необходимо применять два взаимоисключающих («дополнительных») набора классических понятий, совокупность которых дает наиболее полную информацию об этих явлениях как о целостных.
По современным представлениям, квантовый объект – это одновременно и частица, и волна, которые являются классическими понятиями. Для возможно полного представления о микрообъекте мы должны использовать два разных типа приборов: один – для излучения волновых свойств, другой – для корпускулярных. Эту свойства несовместимы в отношении их одновременного проявления, но оба они в равной мере характеризуют микрообъект, а поэтому не противоречат, а дополняют друг друга. Эта идея и положена Бором в основу важнейшего методологического принципа современной науки – принципа дополнительности.
2.8.3. Принцип суперпозиции
В физике при изучении линейных систем широко используется принцип суперпозиции.
Принцип суперпозиции: общий результат воздействия на систему многих факторов равен сумме результатов воздействия каждого отдельного фактора.
Принцип суперпозиции играет большую роль во многих разделах физики и техники, в том числе и в теории колебаний и волновых процессов.
Например, если среда, в которой распространяется негармоническая волна S, линейна, т.е. ее свойства не меняются под воздействием возмущений, создаваемых этой волной, то все эффекты, вызываемые данной негармонической волной, могут быть определены как сумма эффектов, создаваемых каждой из гармонических составляющих (поскольку каждую негармоническую волну можно представить в виде суммы гармоник), т.е. S = S1, + S2 +... + Sn , +...
Особенно плодотворным оказалось применение принципа суперпозиции при изучении микромира. Здесь он стал одним из фундаментальных принципов (наряду с соотношением неопределенностей), составляющих основу математического аппарата квантовой механики. Как известно, состояния микросистем описываются волновыми функциями. Из принципа суперпозиции, например, следует, что если квантово-механическая система может находиться в некоторых конкретных состояниях, описываемых волновыми функциями, то физически допустимым будет состояние, изображаемое другой волновой функцией, т.е. суперпозицией исходных волновых функций. Принцип суперпозиции в описании микромира отражает волновую природу микрочастиц.
2.9. Динамические и статистические закономерности в природе
Рассмотрим два типа физических явлений: механическое движение тел и тепловые процессы. В первом случае движение тел подчиняется законам Ньютона, законам классической механики. Законы классической механики называются динамическими законами, тем самым подчеркивается, что движение происходит под действием тех или иных сил. Динамические законы имеют строго однозначный характер всех связей и зависимостей.
Зная начальное состояние механической системы, можно однозначно определить ее последующие состояния. Динамические закономерности не допускают какой-либо неопределенности системы. Они действуют во всех автономных, мало зависимых от внешней среды системах с относительно малым количеством входящих в нее элементов (например, характер движения планет Солнечной системы).
Во второй половине XIX в. наряду с динамическими в ряде разделов физики получили широкое развитие статистические методы исследования.
Классическим примером является статистическое рассмотрение тепловых термодинамических процессов. В данном случае рассматриваемая система, в отличие от динамической, включает огромное число отдельных элементов (например, полное число молекул газовой системы). И здесь рассматривается не движение каждой отдельно взятой молекулы, а лишь вероятностные ее характеристики. Затем, используя теорию вероятностей, теорию случайных событий, можно определить усредненные характеристики всей системы и установить статистические закономерности поведения всей системы.
Примером тому может служить установление статистической закономерности между температурой газа и кинетической энергией совокупности молекул системы в молекулярно-кинетической теории газа.
Статистические закономерности действуют во всех неавтономных, сильно зависящих от внешней среды системах, с большим количеством элементов.
При статистических закономерностях данное состояние системы определяет все ее последующие состояния не однозначно, а лишь с определенной вероятностью.
В классической термодинамике в основном рассматриваются изолированные системы, которые не обмениваются с внешней средой энергией. Именно для таких систем установлен закон возрастания энтропии. Этот закон имеет простое статистическое толкование. Действительно, энтропия изолированной, т.е. предоставленной самой себе, системы не может убывать. С другой стороны, очевидно, что предоставленная самой себе система будет переходить из менее вероятного состояние в более вероятное. Таким образом, энтропия и вероятность состояний изолированной системы ведут себя аналогично: они могут либо возрастать, либо оставаться неизменными.
В последние годы широкое развитие получили исследования в области термодинамики неизолированных, так называемых открытых систем, т.е. систем, которые обмениваются энергией и веществом с внешним миром. Открытыми являются биологические системы, в частности клетка живых организмов. Для таких систем энтропия может как возрастать, так и убывать.
В изолированных системах естественные процессы идут в направлении от упорядоченных структур к неупорядоченным, т.е. от порядка к беспорядку, хаосу. И в этом смысле можно говорить о том, что энтропия есть мера хаоса.
Для неизолированных, открытых, систем эволюция, например, живых организмов ведет от менее совершенных форм к более совершенным, от меньшего порядка в природе к большему, и в этих системах энтропия может не увеличиваться, а уменьшаться.
2.10. Законы сохранения энергии в макроскопических процессах
2.10.1. Формы энергии
Энергия (от греч.– действие, деятельность) – общая количественная мера движения и взаимодействия всех видов материи, Понятие «энергия» связывает воедино все явления природы.
В соответствии с различными формами движения материи рассматривают и разные формы энергии: тепловую, механическую, внутреннюю, химическую, электромагнитную, ядерную и др. Это деление в известной степени условно.
Механическая энергия подразделяется в свою очередь на кинетическую и потенциальную.
Внутренняя энергия равна сумме кинетических энергий хаотического движения молекул относительно центра масс и потенциальных энергий взаимодействия молекул друг с другом.
Химическая энергия складывается из кинетической энергии движения электронов и электрической энергии взаимодействия электронов друг с другом и с атомными ядрами молекул химически веществ. Энергия химических связей для двухатомных молекул – это энергия, требуемая для удаления атомов на бесконечно большое расстояние друг от друга. Для многоатомных молекул, радикалов ионов рассматривается также энергия диссоциации. Суммарная энергия удаления всех атомов многоатомных молекул друг от друга на бесконечное расстояние называется энергией образования молекулы и приблизительно равна сумме энергий химических связей.
В атомной физике используется понятие энергии ионизации. Она равна работе, затрачиваемой на удаление одного внешнего электрона из атома, или ионизационному потенциалу.
В микрофизике широко используется понятие энергии связи. Энергия связи системы каких-либо частиц (например, атома как системы, состоящей из ядра и электронов) равна работе, которую необходимо затратить, чтобы разделить данную систему на составляющие ее частицы и удалить их друг от друга на такое расстояние, при котором их взаимодействием можно пренебречь. Энергия связи определяется взаимодействием частиц и является отрицательной величиной, так как при образовании связанной системы энергия выделяется. Абсолютная величина энергии связи характеризует прочность связи и устойчивость системы.
Энергия связи электронов в атоме или молекуле определяется электромагнитными взаимодействиями и для каждого электрона пропорциональна ионизационному потенциалу.
Энергия связи в атомных ядрах определяется сильным взаимодействием нуклонов и, согласно соотношению Эйнштейна ΔЕ = Δтс2, пропорциональна дефекту масс атомных ядер Δm.
Энергия связи, обусловленная гравитационным взаимодействием, обычно мала и имеет значение лишь для космических объектов.
2.10.2. Закон сохранения энергии для механических процессов
Одним из наиболее фундаментальных законов природы является закон сохранения энергии, согласно которому важнейшая физическая величина – энергия – сохраняется в изолированной системе.
Закон сохранения энергии: в изолированной системе энергия может переходить из одной формы в другую, но ее количество остается постоянным.
Если система не изолирована, то ее энергия может изменяться либо при одновременном изменении энергии окружающих тел на такую же величину, либо за счет изменения энергии взаимодействия тела с окружающими телами. При переходе системы из одного состояния в другое изменение энергии не зависит от того, каким способом (в результате каких взаимодействий) происходит переход, т.е. энергия – однозначная функция состояния системы.
Закон сохранения энергии является строгим законом природы, справедливым для всех известных взаимодействий. Согласно известной теории Э. Нётер, он связан с однородностью времени, т.е. с тем фактом, что все моменты времени эквивалентны и физические законы не меняются со временем.
Закон сохранения энергии для механических процессов был установлен Г. Лейбницем (1686) а для немеханических – в середине XIX в. Ю.Р. Майером (1845), Дж. Джоулем и Г. Гельмгольцем (1847).
В термодинамике закон сохранения энергии называется первым началом термодинамики.
Открытие закона сохранения и превращения энергии вначале было итогом развития механики. Но затем, благодаря дальнейшим экспериментальным исследованиям и теоретическому осмысливанию их результатов, становилось ясно, что содержание этого закона значительно глубже, что он – всеобщий закон природы. Это позволило быстрыми темпами развивать теорию тепловых процессов, что привело к появлению термодинамики. Особо важную роль закон сохранения и превращения энергии сыграл в изучении электрических и магнитных явлений, своеобразие и специфика которых не допускали применения других механических (по своему происхождению) понятий.
Становление и утверждение закона сохранения энергии охватывает длительный период – более полутораста лет. Как уже указывалось, первым был установлен закон сохранения энергии для механического движения.
Первый период был связан с длительной дискуссией о так называемых «мерах движения» и введением понятия «работа».
В первой половине XVII в. Р. Декарт ввел понятие меры движения — количество движения, или импульс, которое в современных обозначениях выглядит следующим образом: Р = mv , где т – масса (во времена Декарта понятия массы т еще не было), v – скорость (Р и v – векторные величины).
Понятием количества движения, равного mv, пользовались многие ученые того времени, в том числе и И. Ньютон. Однако в 1686 г. появилась статья Г. Лейбница «Краткое доказательство ошибки Декарта... о количестве движения...», в которой он в качестве меры движения предлагал считать величину mv2, названную им «живой силой». «Живая сила» при определенных условиях в механических движениях была величиной постоянной.
По Лейбницу, основной закон природы состоит не в сохранении количества движения, но в том, что необходимо сохранить одно и то же количество двигательной деятельности, которое означает совсем не то, что понимают сторонники Декарта под количеством движения.
При введении меры движения в виде величины mv2 Лейбниц рассуждал следующим образом. Известно, что для поднятия тела весом в 1 фунт на высоту в 4 локтя требуются такие же усилия, как и для поднятия веса тела в 4 фунта на 1 локоть. Если же предоставить этим телам возможность падать, то в момент касания земли скорость первого тела будет в два раза больше скорости второго (). Значит, они будут обладать разным количеством движения (mv — по Декарту). Но если взять произведение массы т на v2, то mv2 будет величиной, одинаковой для обоих тел.
Это произведение mv2 он и выбрал в качестве меры движения. «Живая сила» (mv2), по мнению Лейбница, выражает то «количество двигательной деятельности, которое сохраняется в природе».
Теперь мы знаем, что mv2 есть удвоенная кинетическая энергия движущегося тела. Таким образом, Лейбниц, по сути, вначале сформулировал закон сохранения кинетической энергии. Кинетическая энергия, по современной терминологии, определяется как физическая величина, равная половине произведения массы частицы на квадрат ее скорости: . Это уже знакомая «живая сила» Лейбница, только разделенная пополам. Разделить ее на два предложил французский механик Г. Кориолис.
Основанием послужила теорема, доказанная за несколько лет до этого французским математиком Л.Н. Карно. Согласно его теореме, если тело движется под действием постоянной силы, то удвоенное произведение силы (F) на перемещение (s) равно разности «живых сил» в конце и начале перемещения:
.
Тогда это было новым словом в практической механике.
Произведение силы на перемещение в формуле (2.1) Г. Кориолис вслед за другим французским механиком, Ж.В. Понселе, назвал работой. Если работу обозначить через А и записать как
A = Fs,
то формулу следует переписать в виде:
.
Появившиеся в знаменателях этой формулы двойки дали основание Г. Кориолису принять за меру движения половину лейбницевой «живой силы».
Теорему, выраженную формулой, принято называть теоремой о кинетической энергии. В соответствии с ней работа сил, действующих на тело, равна изменению кинетической энергии этого тела:
А = EK2-EK1=ΔEK.
Из теоремы следует, что кинетическая энергия равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему заданную скорость движения.
Следующий важный шаг в развитии понятия механической энергии был сделан Г. Гельмгольцем, чей вклад в обоснование закона сохранения энергии будет более подробно рассмотрен ниже. Изучая движение тел под действием сил, которые постоянны или зависят от расстояния, но не от времени и скорости, он обратил внимание на то, что левую часть уравнения в таком случае всегда можно представить в виде разности значений некоторой величины, характеризующей взаимодействие рассматриваемых тел.
Поскольку новая величина имела такую же размерность, что и «живая сила», Г. Гельмгольц предложил и ее назвать «силой», но не «живой», а «напряженной». Впоследствии «напряженная сила» Гельмгольца была переименована в потенциальную энергию. Потенциальная энергия – это энергия взаимодействия. Она определяется работой, которую должны совершить силы, чтобы переместить тело из данного положения в нулевое:
ЕП=А1 – 0.
Выбор нулевого положения произволен. Поэтому потенциальная энергия определена неоднозначно: по отношению к разным нулевым уровням потенциальная энергия одного и того же тела будет различной. Например, потенциальная энергия тела, взаимодействующего с Землей, может быть найдена по формуле ЕП = mgh, где h — высота центра тяжести тела, отсчитываемая от нулевого уровня. Принимая за нулевой уровень поверхность Земли, пола в комнате или, наконец, стола, над которым находится рассматриваемое тело, мы получим разные значения h и соответственно разные значения потенциальной энергии.
Для потенциальной энергии справедлива теорема, аналогичная теореме о кинетической энергии. По теореме о потенциальной энергии, работа консервативных сил при любом движении тела равна разности потенциальных энергий в начальном и конечном состояниях:
А = ЕП1 – ЕП2 = –ЕП.
Рассматривая консервативные системы, т.е. системы, в которых действуют лишь консервативные силы, Гельмгольц пришел к выводу, что одна и та же величина может быть выражена и через приращение кинетической энергии системы, и через убыль ее потенциальной энергии. Это означает, что увеличение кинетической энергии рассматриваемой системы всегда сопровождается соответствующим уменьшением ее потенциальной энергии, и наоборот:
.
Если переписать равенство в виде
,
то станет ясно, что сумма кинетической и потенциальной энергий рассматриваемой системы в процессе ее движения не меняется. На основании этого можно объединить обе величины в одну — полную механическую энергию системы:
Е = ЕК + ЕП.
Из отношения следует, что Е = const.
Итак, при любых процессах, происходящих в консервативной системе, ее полная механическая энергия остается неизменной. Это утверждение называется законом сохранения механической энергии.
Поскольку кинетическую энергию Г. Гельмгольц называл «живой силой», а потенциальную энергию – «напряженной», то первая формулировка закона сохранения энергии, данная Гельмгольцем, такова:
Когда тела природы действуют друг на друга с силами притяжения или отталкивания, не зависимыми от времени и скорости, то сумма живых сил и напряженных сил остается постоянной.
Следующий этап установления закона сохранения и превращения энергии связан с изучением превращения различных форм энергии друг в друга.
На начальном этапе изучения превращения различных форм движения друг в друга исключительную роль сыграл С. Карно, который впервые занялся изучением вопроса превращения теплоты в работу паровых машин.
Поставив вначале достаточно скромную техническую задачу, как наиболее экономно использовать топливо в паровых машинах, он решил не только эту проблему, но и получил целый ряд принципиально новых результатов, имеющих важное значение для развития многих направлений естествознания.
Во-первых, С. Карно нашел наиболее оптимальные условия работы тепловой машины (цикл Карно), при которых можно добиться максимального коэффициента ее полезного действия. Теорема Карно о максимальном коэффициенте полезного действия тепловых машин сыграла в дальнейшем важную роль в установлении одного из фундаментальных законов природы — второго начала термодинамики.
Затем, продолжая свои исследования, он пришел к правильным взглядам на природу теплоты, как на совокупность механического движения атомов, из которых состоят физические тела.
Он отмечал: Тепло – не что иное, как движущая сила или, вернее, как движение, изменившее свой вид, – это движение частиц тела,- повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, пропорциональном количеству исчезнувшей движущей силы. Обратно: всегда при исчезновении тепла возникает движущая сила. Таким образом, можно высказать общее положение: движущаяся сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается; в действительности она меняет форму, т.е. вызывает то один род движения, то другой, но никогда не исчезает.
Как видно из приведенной цитаты, С. Карно сформулировал закон сохранения и превращения «сил» (по современной терминологии – энергии), закон сохранения и превращения тепловой и механической энергии. Он даже впервые приблизительно определил механический эквивалент теплоты.
По некоторым представлениям, которые у меня сложились относительно теории теплоты, – писал Карно, – создание единицы движущей силы (по современной терминологии – единицы механической работы) требует затраты 2,7 единицы тепла.
При переводе в современные единицы это значение механического эквивалента равно примерно 370 кГм/ккал.
Противоположную С. Карно задачу, а именно: исследование обратного процесса превращения работы в тепло в результате трения, поставил себе Б. Томпсон. Работая на пушечных заводах, он заметил, что при сверлении пушечных стволов они очень сильно нагреваются.
Он помещал пушечный металлический ствол в воду и в результате сверления доводил температуру воды до кипения и испарения. Подсчитав, сколько необходимо энергии для испарения воды, он установил равенство между этой энергией и механической работой при сверлении стволов пушек. Б. Томпсон также пришел к выводу, что теплота есть форма движения.
2.10.3. Всеобщий закон сохранения и превращения энергии
Изучение процесса превращения теплоты в работу и обратно и установление механического эквивалента теплоты сыграло основную роль в открытии всеобщего закона сохранения и превращения энергии. Все большее место в физических исследованиях занимали явления, в которых происходило превращение одних форм движения в другие. Исследования многих химических, тепловых, электрических, магнитных, механических, световых явлений постепенно способствовали возникновению и развитию идеи о взаимопревращении различных форм движения друг в друга в эквивалентных количественных отношениях.
А к середине XIX в. закон сохранения и превращения энергии был признан как общий закон природы, охватывающий все физические явления. Приоритет установления данного закона научная общественность того времени признала за тремя учеными. Из них двое немецких ученых – Ю.Р. Майер и Г. Гельмгольц по профессии были врачами, а третий – англичанин Дж. Джоуль – специалистом в области электрических явлений.
То, что именно врачи Ю.Р. Майер и Г. Гельмгольц сделали решающий вклад в установление этого закона, не случаен, поскольку, изучая физиологию человека, обмен веществ в живом организме, они столкнулись с наиболее сложными комплексными процессами энергопревращения в различных органах и тканях. В частности, Ю.Р. Майер обнаружил, что в условиях разного теплообмена между человеком и окружающей средой в северных и южных районах в связи с неодинаковыми перепадами температур окислительно-восстановительные процессы в организме идут по-разному. В результате состав и цвет крови у южан и северян различный.
Развивая свои исследования, немецкие ученые осуществили ряд блестящих опытов и расчетов по выявлению связи между отдельными частными видами взаимопревращения энергии.
Так, Ю.Р. Майер также исследовал процессы перехода механического движения в теплоту и обратно и определил механический эквивалент теплоты (равный 365 кГм/ккал), процессы превращения механической энергии через трение в электричество и электричества в теплоту.
Г. Гельмгольц изучал процессы превращения кинетической энергии в потенциальную и обратно, превращение механической энергии в теплоту, электрической энергии в теплоту и механическую энергию при производстве работы за счет электричества.
Третий из авторов закона сохранения и превращения энергии Дж. Джоуль основное внимание уделял изучению процессов выделения тепла электрическим током во всей электрической цепи, в том числе и в гальванических элементах, где происходят электролитические химические реакции. В результате им была установлена связь между тепловой, электрической и, что очень важно, одновременно химической энергией.
Он определил, что общее количество теплоты равно теплоте химических реакций, протекающих в гальванических элементах, за то же время. Таким образом, им было показано, что источником теплоты, выделенной в цепи электрического тока, являются химические процессы, проходящие в гальваническом элементе, а электрический ток как бы разносит эту теплоту по всей цепи. Он писал, что «электричество может рассматриваться как важный агент, который переносит, упорядочивает и изменяет химическое тепло».
В дальнейшем Дж. Джоуль проделал свой знаменитый опыт, в котором экспериментально более точно определил механический эквивалент теплоты. С помощью падающих грузов он заставлял ось с лопастями вращаться внутри калориметра, наполненного жидкостью. Измеряя совершаемую грузами работу и выделенную в калориметре теплоту, Дж. Джоуль получил механический эквивалент теплоты, равный 424 кГм/ккал.
Установление закона сохранения и превращения энергии сыграло в истории естествознания огромную роль. Его утверждение стало свое образным катализатором для понимания многих явлений, а также обоснования и открытия целого ряда других частных законов природы.
2.10.4. Закон сохранения энергии в термодинамике
Закон сохранения энергии сыграл решающую роль в создании новой научной теории – термодинамики.
Опираясь на этот закон, был сделан ряд открытий в области электродинамики. У Томсон, используя закон сохранения и превращения энергии при исследованиях явления электромагнитной индукции и самоиндукции, установил при этом, что энергия проводника с током может быть выражена формулой LI2/2, где I – ток, a L – коэффициент самоиндукции — величина, зависящая только от геометрии проводника.
Исследуя вопрос об энергии магнитов и электрических токов, У. Томсон в 1853 г. выразил эту энергию в виде интеграла, взятого по объему.
В том же году Р. Клаузиус применил закон сохранения энергии к энергетическим процессам в цепи постоянного тока, а в следующем году – к термоэлектрическим явлениям.
Помимо У. Томсона и Р. Клаузиуса над развитием и применением закона сохранения и превращения энергии много работал У. Дж. М. Ранкин. Он первым начал широко применять термин «энергия» и попытался дать этому понятию общее определение. Под энергией системы вслед за Ранкиным стали понимать ее способность производить работу. Ранкин писал: Термин «энергия» предполагает любое состояние субстанции, которое заключается в способности производить работу; количество энергии измеряется количеством работы, которую она способна произвести.
Еще раньше, Ранкин разделил энергию на «актуальную», или «ощутимую», и «потенциальную», или «скрытую». К «ощутимой» энергии он относил «живую силу» (термин, широко используемый в более ранних работах многих ученых, начиная с Лейбница), теплоту, лучистую теплоту, свет, химическое действие и электрический ток, которые являются ее различными формами; к «потенциальной», или «скрытой», – «механическую силу гравитации», упругость, химическое сродство, энергию статического электричества и магнетизма. У. Томсон для «актуальной», или «ощутимой», механической энергии ввел впоследствии понятие кинетической энергии движущихся тел.
Благодаря этим трем великим открытиям, – писал он, – мы можем теперь в общем и в целом обнаружить не только ту связь, которая существует между процессами природы в отдельных ее областях, но также и ту, которая имеется между этими отдельными областями.
2.11. Принцип возрастания энтропии
2.11.1. Понятие энтропии
Понятие энтропии исторически возникло при рассмотрении и изучении тепловых процессов и создании термодинамики. К моменту зарождения термодинамики в естествознании господствовала механика Ньютона, механика обратимых процессов, которые могут идти как в прямом, так и в обратном направлении с так называемым обратимым временем. Например, вращающееся тело проходит при движении одни и те же положения при вращении по часовой стрелке, а затем и против часовой стрелки. Или другой пример: в принципе возможны все механические движения, показанные на кинопленке, при ее прокручивании как в прямом, так и в обратном направлении. В термодинамике в этом отношении все обстоит иначе.
Французский математик и физик Ж.Б. Фурье установил один из основных законов теплопроводности – односторонний переход теплоты от более нагретого тела к менее нагретому. Именно с этого момента начался выход физики за пределы ньютоновой схемы.
При переходе теплоты от более горячего тела к более холодному температуры тел постепенно (т.е. во времени!) выравниваются и становятся едиными для обоих тел – наступает состояние термодинамического равновесия. Таким образом, все системы, содержащие различные тела с разной температурой, естественным образом постепенно переходят в состояние термодинамического равновесия с выровненной температурой во всех участках данной системы. Такие процессы в силу закона Фурье имеют однонаправленность во времени, в связи с чем появилось понятие необратимости процессов, необратимости времени, «стрелы времени».
Итак, первым важным открытием было открытие того факта, что все протекающие естественным образом (без участия внешних сил) тепловые процессы необратимы.
Второе, не менее важное открытие – установление второго начала (закона) термодинамики – принадлежит С. Карно, который изучал проблему использования теплоты (тепловой энергии) через преобразование ее в механическую энергию для производства работы в тепловых двигателях. Во времена С. Карно это были в основном паровые машины. Результаты своих исследований он изложил в сочинении «Размышления о движущей силе, огне и о машинах, способных развивать эту силу».
Карно установил, что тепловую энергию, которой обладает нагретое тело, непосредственно невозможно превратить в механическую энергию для производства работы. Это можно сделать только в том обязательном случае, если часть тепловой энергии тела с температурой Т1 передать другому телу с меньшей температурой Т2 и, следовательно, нагреть его до большей температуры. Иными словами, в механическую энергию для производства работы можно преобразовать только часть тепловой энергии и только при обязательном условии, что в системе такого преобразователя имеется нагреватель с температурой Т1 и охладитель с температурой Т2, т.е. для производства работы механической системой необходима разность температур Т1 – Т2. Все механические системы, использующие тепло, работают «на перепаде температур» между нагревателем и холодильником. Карно выразил эту мысль следующим образом: Возникновение движущей силы обязано в паровых машинах не действительной трате тепла, но его переходу от горячего тела к холодному... Недостаточно создать теплоту, чтобы вызвать появление движущей силы: нужно еще добавить холод; без него теплота стала бы бесполезной.
Помимо этого, одного из важнейших открытий XIX в., Карно определил ту часть тепловой энергии, которая может быть переведена в производство механической энергии, в производство работы в тепловых машинах, т.е. он нашел значение разности
W = Q1 – Q2,
где W – полученная механическая энергия в процессе преобразования тепловой энергии;
Q1 – полная тепловая энергия, отдаваемая нагретым телом в процессе преобразований энергии;
Q2 – часть тепловой энергии, переданной холодильнику.
Определив разность Q1-Q2, Карно нашел максимальное значение коэффициента полезного действия тепловых машин (для так называемого идеального цикла Карно), которое оказалось равным
.
Из приведенного соотношения следует, что коэффициент полезного действия (кпд) тепловой машины определяется только значениями Т1 и Т2. Или, по словам Карно, движущаяся сила тепла не зависит от агентов, взятых для ее развития; ее количество исключительно определяется температурами тел, между которыми, в конечном счете, производится перенос тепла.
В дальнейшем, развивая идеи Карно, один из основных создателей теоретической термодинамики немецкий ученый Р.Ю. Клаузиус ввел важнейшее понятие – энтропию. Постепенно содержание понятия энтропии стало существенно расширяться. Из термодинамического понятия оно сначала перешло в другие разделы физики – механику, электричество, магнетизм, оптику, а затем в смежные науки – химию, информатику, биологию, и сейчас стало одним из важнейших понятий современного естествознания наряду с таким, например, понятием, как энергия.
Энтропия (от греч. – поворот, превращение) – функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре Т системы.
Р. Клаузиус обратил внимание на то, что из выражения Карно для максимального коэффициента полезного действия тепловой машины следует, что . Это соотношение, как известно, справедливо только для идеального обратимого цикла работы тепловой машины – цикла Карно. Отношение Клаузиус обозначил буквой S и назвал энтропией, что в переводе с древнегреческого означает «обращение», «превращение», «поворот». Таким образом, по мысли Клаузиуса, энтропия S = характеризует превратимость, превращение. К такому понятию энтропии мы еще вернемся в дальнейшем.
Итак, для циклических обратимых процессов т.е. выполняется закон сохранения энтропии: S1 = S2. Иными словами, в таких процессах холодное тело поглощает столько же энтропии, сколько и выделяется нагретым телом. Реально же все процессы теплопередачи, в соответствии с законом Фурье, являются необратимыми, и при передаче количества тепла Q от горячего тела (с температурой Т1,) к холодному (с температурой Т2) энтропия S1 = всегда будет меньше энтропии S2 = в силу того, что Т1 > Т2 и, следовательно, изменение энтропии ΔS = S2 – S1 всегда положительно. То есть в реальных процессах энтропия термодинамической системы будет возрастать.
Принцип возрастания энтропии справедлив для любой изолированной системы. Это обстоятельство указывает на асимметрию природных явлений, т.е. на однонаправленность происходящих в ней процессов. Раскрытие в дальнейшем более глубокого смысла энтропии, а также установление закона ее возрастания привело к целому ряду очень важных, далекоидущих следствий.
Исследование энтропии в дифференциальной форме показало, что dS является полным дифференциалом, и, следовательно, энтропия не зависит от вида физического процесса, а определяется только состоянием системы. Поэтому энтропия является функцией состояния.
Кроме того, оказалось, что с помощью энтропии удобно исследовать не только тепловые процессы, но и рассматривать процессы преобразования других видов энергии в тепловую. Так, механическая энергия в результате трения переходит в тепловую, электрический ток нагревает проводники тока, электромагнитное поле – среду, через которую оно распространяется, и т.д., т.е. все естественные процессы, в конечном счете, ведут к превращению всех видов энергии в тепловую. Постепенно возникло представление о качестве разных видов энергии и ее деградации с точки зрения качества. Под качеством энергии понимается возможность использования того или иного вида энергии для производства полезной работы.
Сейчас принята следующая иерархия качества энергии в указанном смысле: ядерная, электромагнитная, химическая, механическая и тепловая энергии. При этом каждому виду энергии соответствует свое значение энтропии. Оно имеет минимальное значение для энергии высокого качества и возрастает при превращении всех видов энергии в тепловую и переходу системы в термодинамическое равновесие, при котором энтропия достигает максимальной величины.
В связи с этим значение энтропии («превращения») характеризует меру обесценивания энергии. Там, где происходят процессы изменения и преобразования энергии, следует «ее тень – энтропия».
Сегодня, как уже говорилось, понятие энтропии и знание ее величины необходимы при рассмотрении различных вопросов в физике, например при изучении фазовых переходов между твердым телом, жидкостью и газом, определении теплоты плавления кристаллов, теплоты парообразования. При плавлении и испарении происходит изменение энтропии систем. Термодинамические основы растворения одних веществ в других также требуют знания энтропии. То же касается радужных пленок на поверхности воды и мыльных пузырей. Возрастание растворимости веществ с повышением температуры, расслоение бензина на поверхности воды также связаны с возрастанием энтропии. Изменение энтропии выталкивает молекулы углеводородов из водного окружения.
Изменение энтропии выступает в роли действующей силы. Эта энтропийная сила называется гидрофобной. Вещества, которые выталкиваются ею из воды, называются гидрофобными веществами, в отличие от гидрофильных веществ вроде спирта, которые полностью растворяются в воде. С гидрофобными силами связаны многие важные явления. Но наиболее важные следствия, определяемые гидрофобными энтропийными силами, – это строение белков – веществ, определяющих протекание всех жизненных процессов. Из приведенных примеров видно, что энтропия имеет важнейшее значение для многих вопросов, в том теле и для биологических систем. Важность энтропии в биологии формулировал один из создателей квантовой механики Э. Шрёдингер в своей знаменитой книге «Что такое жизнь с точки зрения физики?» в следующем высказывании: «Живой организм питается отрицательной энтропией». Энтропия играет важную роль во всех естественно-научных дисциплинах. В химии, например, это изучение процессов окисления, пучение реакций со взрывом, оценка возможности или невозможности протекания многих реакций, исследование скоростей протекания тех или иных реакций и др.
Исключительно широкое применение получила энтропия в информатике, в частности, для расчетов пропускной способности различных линий связи и систем передачи информации.
2.12. Основные космологические теории эволюции Вселенной
Учение о мегамире как едином целом и всей охваченной астрономическими наблюдениями области Вселенной (Метагалактике) называется космологией.
Выводы космологии основываются на законах физики и данных наблюдательной астрономии. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные в соответствии с космологическими теориями модели должны допускать проверку для наблюдаемой области Вселенной, выводы теории – подтверждаться наблюдениями (во всяком случае, не противоречить им), теория – предсказывать новые явления.
В конце XX в. этому требованию наилучшим образом удовлетворяли разработанные на основе общей теории относительности однородные изотропные модели нестационарной «горячей» Вселенной.
Возникновение современной космологии связано с созданием релятивистской теории тяготения А. Эйнштейном (1916) и зарождением внегалактической астрономии (начиная с 20-х гг. XX в.).
На первом этапе развития релятивистской космологии главное внимание уделялось геометрии Вселенной кривизна четырехмерного пространства-времени и возможная замкнутость Вселенной.
Начало второго этапа можно датировать работами А.А. Фридмана, который в 1922–24 гг. доказал, что Вселенная, заполненная тяготеющим веществом, не может быть стационарной – она должна расширяться или сжиматься; но эти принципиально новые результаты получили признание лишь после открытия красного смещения (эффекта «разбегания» галактик) астрономом Э. Хабблом (1929).
В результате на первый план выступили проблемы механик Вселенной и ее «возраста» (длительности расширения).
Третий этап в развитии космологии связан с моделями «горячей» Вселенной (Г. Гамов, вторая половина 40-х гг.), в которых основное внимание переносится на физику Вселенной – состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было необычным.
В основе теории лежат уравнения А. Эйнштейна общей теории относительности, из них следуют наличие кривизны пространства-времени и связь кривизны с плотностью вещества. Космологические уравнения допускают существование двух моделей. В одной из кривизна трехмерного пространства отрицательна или (в пределе) равна нулю. Вселенная бесконечна (открытая модель). В такой модели расстояния между скоплениями галактик со временем неограниченно возрастают. В другой модели кривизна пространства положительна, Вселенная конечна (но столь же безгранична, как и в открытой модели). В такой (замкнутой) модели расширение со временем сменяется сжатием. В ходе эволюции Вселенной кривизна трехмерного пространства уменьшается при расширении, увеличивается при сжатии, но знак кривизны не меняется, т.е. открытая модель остается открытой, замкнутая – замкнутой. Начальные стадий эволюции по обеим моделям совершенно одинаковы: должно было существовать особое начальное состояние – сингулярность с огромной плотностью массы и кривизной пространства и взрывное, замедляющееся со временем расширение.
Из космологических уравнений следует, что равная нулю кривизна пространства может иметь место только при строго определенной критической плотности ρкр.
Если , то мир замкнут, при мир является открытым. Два указанных исходных положения достаточны для суждений об общем характере эволюции Вселенной, но они оставляют открытым вопрос о ее начальном состоянии.
С 60–70-х гг. XX в. стала общепринятой модель «горячей» Вселенной (предполагается высокая первоначальная температура). В условиях очень высокой температуры (Т > 1013 К) существовала лишь равновесная смесь различных элементарных частиц (включая фотоны и нейтрино). Можно рассчитать состав такой смеси при разных температурах Т, соответствующих последовательным этапам эволюции, найти закон расширения однородной и изотропной Вселенной и изменение ее физических параметров в процессе расширения.
Согласно этому закону во Вселенной в момент с должны были существовать фотоны, электроны, позитроны, нейтрино, антинейтрино, а также большая примесь нуклонов (протонов и нейтронов). В результате последующих превращений к моменту мин из нуклонов образовалась смесь легких ядер (2/3 водорода и 1/3 гелия по массе; все остальные химические элементы синтезировались из этого дозвездного вещества, причем намного позднее, в результате ядерных реакций в недрах звезд). В момент образования нейтральных атомов гелия и водорода (рекомбинация нуклонов и электронов в атомы произошла при лет) вещество становилось прозрачным для оставшихся фотонов, и они должны наблюдаться в настоящее время в виде реликтового излучения, свойства которого можно предсказать на основе теории «горячей» Вселенной.
Наибольшее принципиальное значение этой теории имеют выводы о нестационарности (расширении) Вселенной, о высоких значениях плотности и температуры в начале расширения («горячая» Вселенная) и об искривленности пространства-времени.
Вывод о нестационарности надежно подтвержден космологическим красным смешением, обнаруженным Э. Хабблом в 1929 г.: наблюдаемая область Вселенной расширяется, и это расширение длится, по меньшей мере, 15—20 млрд. лет. Столь же основательное подтверждение нашла и концепция «горячей» Вселенной: в (1965) американскими физиками А.А. Пензиасом и Р.В. Вильсоном было открыто реликтовое излучение, которое оказалось изотропным, а спектр его – равновесным с Т = 3 К.
Что касается плотности вещества, то астрономические наблюдения приводят к значениям усредненной плотности вещества, входящего в видимые галактики, г/см3. Определить плотность скрытого (невидимого) вещества, а тем более плотность, создаваемую нейтрино (если масса нейтрино не равна нулю), гораздо труднее, и неопределенность суммарной плотности из-за этого весьма велика. На основе имеющихся наблюдательных данных (10–31 < ρ < 10–29 г/см3) нельзя сделать окончательного выбора между открытой (расширяющейся безгранично) и замкнутой (расширение в далеком будущем сменится сжатием) моделями. Эта неопределенность никак не сказывается на общем характере прошлого и современного расширения, но влияет на возраст Вселенной (длительность расширения).
Модель расширяющейся Вселенной
Значение термина Вселенная более узкое и приобрело специфически научное звучание.
Вселенная – место вселения человека, доступное эмпирическому наблюдению. Постепенное сужение научного значения термина Вселенная вполне понятно, так к естествознание, в отличие от философии, имеет дело только с тем, что эмпирически проверяемо современными научными методами.
Вселенную в целом изучает наука, называемая космологией, т. е. наукой о космосе. Космология, в основе своей открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет с бой цель изучения Вселенной как единого упорядоченного целого.
Все законы и научные теории являются моделями, поскольку они могут быть заменены в процессе развития науки другими концепциями, но модели Вселенной как бы в большей степени модели, чем многие иные научные утверждения.
Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения:
-свойства Вселенной одинаковы во всех ее точках и направлениях;
-наилучшим известным описанием гравитационного поля являются уравнение Эйнштейна. Из этого следует кривизна пространства и связь кривизны с плотностью массы (энергии).
Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:
принципом относительности, гласящим, что во всех инерционных системах выполняются все законы сохранения вне зависимости от того, с какими скоростями, равномерно прямолинейно движутся эти системы друг относительно друга;
экспериментально подтвержденным постоянством скорости света.
Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. При излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных (красных) волн.
Для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, т. е. о расширении Метагалактики –, видимой части Вселенной.
Составной частью модели расширяющейся Вселенной является представление Большом Взрыве, происшедшем где-то примерно 12 –18 млрд. лет назад
Как это ни удивительно, современная наука допускает (именно допускает, но не утверждает), что все могло создаться из ничего. «Ничего» в научной терминологии называется вакуумом.
Современная квантовая механика допускает (это не противоречит теории), что вакуум может приходить в «возбужденное состояние», вследствие чего в нем может образоваться поле, а из него (что подтверждается современными физическими экспериментами) – вещество
Рождение Вселенной «из ничего» означает с современной научной точки зрения самопроизвольное возникновение из вакуума, когда в отсутствии частиц происходит случайная флуктуация.
Флуктуация представляет собой появление виртуальных частиц, которые непрерывно рождаются и сразу же уничтожаются, но так же участвуют во взаимодействиях, как и реальные частицы. Благодаря флуктуациям, вакуум приобретает особые свойства, проявляющиеся в наблюдаемых эффектах.
После Большого Взрыва образовался сгусток плазмы «состояния, в котором находятся элементарные частицы» нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны.
По наиболее обоснованным оценкам, возраст расширяющейся Вселенной составляет примерно 13 млрд. лет.
Контрольные вопросы
1.Что такое корпускулярно-волновой дуализм материи?
2. Почему энтропия является мерой порядка и беспорядка в природе?
3. Какова классификация материи на микро-, макро-, мегамиры?
4. Сформулируйте основные законы сохранения.
5. Каково объяснение периодической системы Д.И. Менделеева?
6. Каковы фундаментальные взаимодействия в природе?
7. Какова связь симметрии и законов сохранения?
8. какова связь пространства и времени в специальной теории относительности?
9. В чем различие между динамическими и статистическими закономерностями в природе?
10. Каков смысл принципа дополнительности?
3. ХИМИЧЕСКИЕ КОНЦЕПЦИИ ОПИСАНИЯ ПРИРОДЫ
Химия – наука о веществах и процессах их превращения, сопровождающие изменением состава и структуры.
Основанием химии выступает проблема получения веществ с заданными свойствами (производственная задача) и выявление способов управления свойствами веществ (научная задача). Свойства веществ зависят:
1) от элементарного и молекулярного состава;
2) от структуры молекулы;
3) от термодинамических и кинетических условий процесса химической реакции;
4) от уровня химической организации вещества.
Концептуальные этапы получения знаний по химии можно представить следующим образом:
XVII – учение о составе вещества;
середина XIX в. – учение о структуре вещества;
конец XIX в. – учение о химических процессах;
середина XX в. – учение о химической эволюции.
Четыре способа решения основной проблемы химии:
Первый уровень научных химических знаний, продолжающийся с работ Р. Бойля (1660-е годы) до 1820-1830-х годов: свойства вещества определяются его составом. Химический элемент и химическое соединение. Дальтониды – химическое вещество молекулярного строения и бертоллиды – соединения немолекулярного строения. Вовлечение новых химических элементов в производство материалов. Синтез новых элементоорганических соединений, например фторорганических, обладающих исключительной устойчивостью.
Второй уровень развития химических знаний (середина XIX века): свойства вещества и их качественное разнообразие обуславливаются составом и структурой молекул. Возникновение структурной химии: работы Д. Дальтона, И.Я. Берцелиуса, Ш. Жерара, А. Кекуле, A.M. Бутлерова. Триумфальный марш органического синтеза. Пределы и проблемы структурной органической химии.
Третий уровень химических знаний (середина XX века): учение о химических процессах и механизмах изменения вещества. Свойства вещества зависят от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции. Учение о химических процессах – область науки, где осуществляется глубокое взаимопроникновение физики, химии и биологии. Химическое производство синтетических материалов.
Принципиальная обратимость всех химических реакций. Законы Я. Вант-Гоффа и А. Ле-Шателье. Зависимость хода химических процессов от структурно-кинетических факторов: от строения исходных реагентов, концентрации, наличия катализаторов и др. Проблемы катализа химических реакций и решение задачи химического преобразования ядерной и солнечной энергии.
Химия экстремальных состояний, высокотемпературный синтез.
Четвертый уровень химических знаний (с 1970-х годов): свойства вещества зависят от высоты химической организации вещества. Биологизация химии – возникновение эволюционной химии. Основа лаборатории живого организма – биокатализ. Подражание живой природе – химия будущего. Создание катализаторов по принципу ферментов. Изучение брожения – один из первых опытов изучения химии живой природы. Пути освоения каталитического опыта живой природы: исследование в области металлокомплексного катализа, моделирование биокатализаторов, исследования в области иммобилизованных систем, применение принципов биокатализа в химической технологии.
Отбор химических элементов в ходе эволюции. Химические свойства углерода, отвечающие всем требованиям эволюции: прочность химических связей, их энергоемкость и достаточная лабильность.
Явления самосовершенствования катализаторов в ходе реакции. Самоорганизация химических систем. Теории химической эволюции и биогенеза. Эволюция химических систем.
Четыре способа решения основной проблемы химии – четыре иерархические концептуальные системы. Теоретическое и практическое значения представлений о концептуальных системах химии.
3.1. Развитие учения о составе вещества
Демокрит и Эпикур считали, что все тела состоят из атомов различной величины и формы, чем и объясняли различие тел.
Аристотель и Эмпедокл видимое разнообразие тел природы объясняли посредством сочетания в телах различных стихий: тепла и холода, сухости и влажности. Переход одних веществ в другие, связанный с появлением их новых специфических свойств и «форм». В эпоху эллинизма (до н.э.) возникло учение о «трансмутации» (превращении), согласно которому можно, изменяя сочетание элементов, получать вещество с иными свойствами. Так, пытались получить золото из более распространенных металлов – ртути, свинца и др.
Главной целью алхимия считала поиски «философского камня» для превращения неблагородных металлов в благородные, получение эликсира долголетия, универсального растворителя и др.
В VIII в. широкое распространение в Западной Европе получила «ртутно-серной» теории алхимиков, согласно которой вначале образуется «сера» из огня из воздуха и «ртуть» из земли и воды, а уже из них получаются различные металлы.
Т. Парацельс, в отличие от алхимиков, подчеркнул вещественный характер трех начал: «серы» – начала горючести, «ртути» – начала летучести, «соли» – начала огнепостоянства. Он ставит задачу исследовать свойства веществ и найти новые соединения с более полезными для медицинских целей свойствами, чтобы помогать человеку от болезней, успешно применял препараты ртути против сифилиса. Вскоре медицинскую химию (иатрохимию) стали преподавать на медицинских факультетах университетов.
Научное изучение химических явлений начинается в 1600 г. с работ Р. Бойля. Он создает теорию, по которой окружающий нас мир построен из мельчайших частичек – корпускул, различных по размерам, форме и массе. Они, объединяясь и разъединяясь, образуют качественно различные тела – «структурные формы вещества», среди этих тел вода, земля, железо, ртуть. При получении химических элементов как «простых тел» пользовались универсальным по тому времени методом разложения «сложных тел» – прокаливанием.
Изучение процессов горения привело к появлению первой, хотя она и оказалась ложной, научной теории в химии – теории флогистона, основатель этой теории Г. Шталь. Наблюдая за процессом плавки металлов, например олова, он заметил, что часть металла теряется в виде окалины («извести», как тогда называли), но при соприкосновении с древесным углем вновь превращается в олово. Шталь сделал вывод о том, что уголь участвует в реакции, и предположил, что в угле содержится вещество, которое превращает «известь» в металл. Позже это вещество было названо флогистоном. При всех огромных недостатках теории флогистона (путаница в понятии простого и сложного вещества), впервые были разработаны научные представления о реакциях окисления-восстановления.
Основатель научной химии М.В. Ломоносов в 1756 г. сформулировал один из основополагающих, действующих и по сей день законов естествознания – закон сохранения материи массы: масса веществ, вступивших в реакцию равна массе веществ, образовавшихся в результате реакции. «Все перемены, в натуре случающиеся, такого суть состояния, что, сколько чего от одного тела отнимется, столько присовокупится к другому; так если где убудет несколько материи, то умножится в другом месте. Сей всеобщий закон простирается и в самые правила движения; ибо тело, движущее своей силой другое тело, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает».
Гипотеза флогистона была опровергнута А. Лавуазье после открытия кислорода и установлении его роли в процессах горения и окисления. Так, явление обжига металлов и горение стали рассматривать как процессы соединения элемента с кислородом, а не как процесс разложения «сложного вещества» на элемент и флогистон. Это была настоящая революция в химии. Лавуазье впервые разделил вещества на простые вещества (химические элементы) и химические соединения.
В 1869г. Д.И. Менделеев систематизировал известных тогда 62 элементов на основании их атомного веса и представил это в виде таблицы, которая и получила название «Периодическая таблица Менделеева». Периодический закон, сформулированный Менделеевым, гласит: «Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел ими образованных, состоят в периодической зависимости от их атомного веса».
Современная формулировка периодического закона: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины положительного заряда ядра их атомов.
В этой таблице ярко выявлена периодичность изменения свойств элементов с увеличением их сложности в каждом новом периоде. Систематизация элементов, выполненная Менделеевым, оказала основополагающее влияние на дальнейшее развитие химических исследований. На основании выявленных общностей он предсказал существование неизвестных элементов, оставив для них вакантные места в периодической таблице. Впоследствии эти элементы были открыты и свойства их оказались такими, какие предсказал Менделеев.
В настоящее время доказано, что атом является сложной делимой субъединицей вещества. Вся масса атома сосредоточена в его ядре (~10–13 см). Ядро атома состоит из протонов (р), несущих положительный заряд (+1) и обладающих массой. Заряд ядра равен порядковому номеру элемента. Вокруг ядра по орбиталям вращаются электроны (е) – частицы с зарядом –1. Количество электронов равно количеству протонов, атом в целом электронейтрален. Ядро атома кроме протонов содержит нейтроны (n) – частицы, не имеющие заряда, но обладающие массой.
Пример строения хлора (С): порядковый номер 17, а атомная масса 37, число электронов 17, ядро содержит 17 протонов и 20 электронов.
Ядра элементов могут содержать различное количество нейтронов, так есть атомы хлора, обладающие атомной массой 37 и 35, их ядра содержат 20 и 18 нейтронов соответственно – это так называемые изотопы (37Сl, 35Сl).
Изотопы – атомы с одинаковым зарядом ядра (и соответственно химическими свойства), но разным числом нейтронов.
Химический элемент – вид атомов с одинаковым зарядом ядра, т. е. это совокупность изотопов.
С начала ХIХ в. активно обсуждался вопрос о том, что относится к химическим соединениям, а что к смесям.
Ж. Пруст сформулировал закон постоянства состава: любое индивидуальное химическое соединение обладает строго определенным неизменным составом, «прочным притяжением составных частей» (атомов) и тем отличается от смесей.
С позиций атомно-молекулярного учения данный закон был обоснован химиком Д. Дальтоном; он утверждал, что все простые и сложные индивидуальные вещества состоят из мельчайших частиц – молекул, которые в свою очередь образованы из атомов химических элементов. Так, молекулы простых веществ – водорода (Н2), кислорода (О2), озона (О3), – образованные из атомов одного элемента. Молекулы сложных веществ образованы из разных атомов.
К. Бертолле утверждал возможность существования индивидуальных химических соединений переменного состава с непрерывным изменением. Так, интерметаллические соединения, состоящие из 2 металлов: цинк-сурьма, магний-серебро и др. образуют соединения, как с постоянным, так и с переменным составом. Н.С. Курнаков первые из них назвал дальтонидами в честь Ж. Дальтона, а вторые – бертоллидами в честь К. Бертолле.
Молекула – наименьшая частица вещества, обладающая его химическими свойства и состоящая их одинаковых или разных атомов. В состав молекул входят атомы. Большинство неорганических веществ не имеют молекулярного строения.
Атом – наименьшая частица химического элемента, носитель его свойств.
Химическое соединение – определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых химической связью объединены в частицы – молекулы, комплексы, монокристаллы или иные агрегаты.
3.2. Развитие учения о структуре молекул
При взаимодействии атомов между ними может возникнуть химическая связь, приводящая к образованию многоатомной системы – молекулы, молекулярного иона или кристалла.
Химическая связь – взаимодействие атомов, обусловленное перекрытием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.
Й. Берцелиус в 1830 г. выдвинул гипотезу: все атомы разных элементов обладают различной электроотрицательностью, причем атом каждого элемента несет два заряда (положительный + и отрицательный –). Объединение атомов в молекулы происходит за счет взаимодействия разноименно заряженных атомов или атомных групп, что сопровождается частичной нейтрализацией зарядов. Например, калий (К) несет положительный заряд, а кислород (О) – отрицательный, взаимодействуя, они образуют оксид. Однако, теория Берцеллиуса, основанная на электростатическом взаимодействии зарядов, не могла объяснить образование молекул из двух одинаково заряженных атомов, например, молекулы О2.
В 1916 г. Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам – эта идея послужила основой для разработки современной теории ковалентной связи. В том же году В. Коссель предположил, что химическая связь возникает при взаимодействии двух атомов, один из них отдает электроны, превращаясь в положительно заряженный ион (катион), а второй атом принимает электрон, превращаясь в отрицательно заряженный ион (анион). Дальнейшее развитие идей Косселя привело к созданию представлений об ионной связи.
Ковалентная связь – химическая связь между атомами, осуществляемая обобществляемыми электронами.
Ковалентная связь между одинаковыми атомами называется неполярной (Н· + ·Н Н : Н или Н – Н).
Ковалентная связь возникающая при взаимодействии атомов разных элементов называется полярной, при этом общая электронная пара (или электронные пары) несколько смещаются в сторону более полярного атома (H – Cl, С≡O).
Ионная связь – химическая связь, осуществляемая за счет электростатического притяжения образовавшихся разноименных ионов (Na+ Cl–, NH4+ OH–).
Металлическая связь – многоцентровая химическая связь с дефицитом электронов в твердом или жидком состоянии, основанная на обобществлении внешних электронных атомов. Металлическая связь характерна только для конденсированного состояния вещества в жидкости или твердом веществе.
Электрически нейтральные атомы и молекулы способны к дополнительному взаимодействию друг с другом: водородная связь – химическая связь, осуществляемая между положительно поляризованным атомом водорода и отрицательно поляризованным атомом F, O и N (реже Cl, S и др.), принадлежащих другой или той же молекуле (НF … HF, Н2О … Н2О).
Ф. Кекуле сформулировал теорию валентности – каждый атом обладает определенной способностью к насыщению, т.е. валентностью, или числом единиц сродства. Благодаря этому появилась возможность составлять так называемые структурные формулы. При написании в любой формуле элементы связывают друг с другом согласно их валентности.
Позже А.М. Бутлеров разработал теорию строения органических соединений:
1. Атомы в молекулах соединены химическими связями согласно их валентности в определенном порядке.
2. Атомы и группы атомов, соединенные в молекуле, оказывают взаимное влияние.
3. Химическое строение вещества определяет его свойства.
4. Изучая химические превращения вещества, можно установить строение вещества и выразить его одной единственной структурной формулой.
Теория Бутлерова явилась фундаментом для развития органической химии.
3.3. Развитие учения о химических процессах
3.3.1. Энергетика химических процессов и систем
Химические реакции – взаимодействие между атомами и молекулами, приводящее к образованию новых веществ, отличных от исходных по химическому составу или строению. Химические реакции в отличие от ядерных не изменяют ни общего числа атомов в системе, ни изотопного состава элементов. Методы управления химической реакцией можно разделить на термодинамические и кинетические, среди последних ведущую роль выполняют каталитические процессы.
Химическая термодинамика отвечает на вопросы о принципиальной возможности протекания данной химической реакции в определенных условиях и о конечном равновесном состоянии системы.
Система – совокупность тел, выделенная из пространства. Если в системе возможен массо- и теплообмен между всеми ее составными частями, то такая система называется термодинамической. Химическая система, в которой возможно протекание реакций, представляет собой частный случай термодинамической. Если между системой и окружающей средой отсутствует массо- и теплообмен, то такая система называется изолированной. Если отсутствует массообмен, но возможен теплообмен, то система называется закрытой. Если же между системой и окружающей средой возможен и массо-, и теплообмен, то система открытая. Система, состоящая из нескольких фаз, называется гетерогенной, однофазная система – гомогенной.
Состояние химической системы определяется свойствами: температура, давление, концентрация, объем, энергия.
Реакции, протекающие в гомогенной системе, развиваются во всем ее объеме и называются гомогенными. Реакции, происходящие на границе раздела фаз – гетерогенными.
Для термодинамического описания системы пользуются так называемыми функциями состояния системы – это любая физическую величину, значения которой однозначно определяются термодинамическими свойствами системы. К важнейшим функциям состояния системы относятся:
- полная энергия системы (Е);
- внутренняя энергия системы (U);
- энтальпия (или теплосодержание) – это мера энергии, накапливаемая веществом при его образовании (Н): Н = U + р∙V;
- энтропия – мера неупорядоченности системы (S);
- энергия Гиббса – мера устойчивости системы при постоянном давлении (G): ∆G = ∆H – T∙∆S;
- энергия Гельмгольца – мера устойчивости системы при постоянном объеме (F): ∆F = ∆U – T∙∆S.
Судить о возможности самопроизвольного протекания процесса можно по знаку изменения функции свободной энергии Гиббса: если ∆G < 0, т.е. в процессе взаимодействия происходит уменьшение свободной энергии, то процесс термодинамически возможен. Если ∆G > 0, то протекание процесса невозможно. Таким образом, все процессы могут самопроизвольно протекать в сторону уменьшения свободной энергии.
Химическое взаимодействие, как правило, сопровождается тепловым эффектом. Процессы, протекающие с выделением теплоты, называются экзотермическими (∆Н < 0), а идущие с поглощением теплоты – эндотермическими (∆Н > 0).
Тепловой эффект химических процессов в изобарных условиях определяется изменением энтальпии, т.е. разницей энтальпий конечного и исходного состояний. Согласно, закону Лавуазье-Лапласа: теплота, выделяющаяся при образовании вещества, равна теплоте, поглощаемой при разложении такого же его количества на исходные составные части.
Более глубокие обобщения термохимических закономерностей дает закон Гесса: тепловой эффект химических реакций, протекающих или при постоянном давлении, или при постоянном объеме, не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным состояниями системы.
I закон термодинамики (закон сохранения энергии) – энергия не исчезает и не возникает вновь из ничего при протекании процесса, она лишь может переходить из одной формы в другую в строго эквивалентных отношениях.
II закон термодинамики – при протекании процесса в изолированной системе обратимых процессов энтропия остается неизменной, а при необратимых процессах увеличивается.
3.3.2. Реакционная способность веществ
Химическая кинетика – раздел химии, изучающий закономерности протекания физико-химических процессов во времени и механизмы взаимодействия на атомно-молекулярном уровне. Химическая кинетика рассматривает зависимость скорости химической реакции от концентрации реагентов, температуры, свойств среды, электромагнитного излучения и других факторов.
Скорость химической реакции (v) – изменение концентрации (С) реагирующих веществ или продуктов реакции в единицу времени (τ) в единице объема системы (для гомогенной реакции) или на единицу площади поверхности раздела фаз (для гетерогенной реакции).
v = ∆С / ∆τ
Зависимость скорости химических реакций от концентраций реагирующих веществ легко понять исходя из молекулярно-кинетических представлений. Молекулы газов, двигаясь в различных направлениях с довольно большой скоростью, неизбежно должны встречаться, сталкиваться друг с другом. Взаимодействие между молекулами, очевидно, может происходить только при их столкновениях, следовательно, чем чаще будут сталкиваться молекулы, тем быстрее будет идти превращение исходных веществ в новые и тем больше будет скорость реакции.
К. Гульдберг и П. Вааге в 1867 г. сформулировали закон действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ.
Скорость гомогенной химической реакции измеряется изменением концентрации реагирующих веществ в единицу времени. Так, для гомогенной реакции типа А + 2В → АВ2 закон действующих масс выражается следующим образом:
v = k∙[A]∙[В]2
где [A] и [В] – концентрации вступающих в реакции веществ, k – константа скорости реакции, зависящая от природы реагирующих веществ.
При гетерогенных реакциях концентрации веществ, находящихся в твердой фазе, обычно не изменяются в ходе реакции и поэтому не включаются в уравнение закона действующих масс.
Скорость всякой реакции непрерывно уменьшается с течение времени, так как взаимодействующие вещества постепенно расходуются и концентрации их уменьшаются. Поэтому, говоря о скорости реакции, всегда имеют в виду скорость в данный момент, т.е. то количество вещества, которое подверглось бы превращению, если бы существующие в данный момент концентрации поддерживались искусственно в течение определенного промежутка времени.
Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа: при повышении температуры на 10°С скорость большинства реакций возрастает в 2–4 раза.
Отношение константы скорости при температуре t + 10° к константе при температуре t называется температурным коэффициентом скорости (γ).
В общем случае, если температура изменилась на ∆t°, уравнение зависимости скорости реакции от температуры имеет вид:
vt+∆t / vt = γ∆t/10
Так, если температурный коэффициент скорости реакции равен 3, то, во сколько возрастет скорость реакции при повышении температуры от 20 до 60 °С? Поскольку ∆t = 60 – 20 = 40 °С, то, обозначив соответственно скорость реакции при 20 и 60 °С соответственно через v и v´, можем записать изменения скорости реакции: v´ / v = 340/10 = 34 = 81 раз.
Сильное возрастание скорости реакции при повышении температуры связано с резким возрастанием числа активных частиц и числа активных столкновений.
Зависимость скорости химической реакции от присутствия катализаторов и ингибиторов – веществ, которые изменяют скорость реакции, но сами в результате реакции остается в химически неизменном состоянии и не расходуется. Вещества, ускоряющие реакцию, называются катализаторами, а замедляющие – ингибиторами. Иногда применение катализаторов может увеличить скорость реакции в 1000 и более раз.
Катализ – изменение скорости химической реакции в присутствии катализаторов. Скорость химической реакции возрастает в присутствии катализатора, в связи с понижением энергия активации реакции через образование нестойких промежуточных соединений – активных комплексов. Процесс, идущий с образованием активного комплекса кинетически более выгоден, т.к. требуется меньшей затраты энергии.
Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию. Такого рода реакции, называются автокаталитическими. Например, кислота, образующаяся при гидролизе эфиров, катализирует этот гидролиз. Скорость автокаталитических реакций в течение некоторого времени (период индукции) мала, но по мере накопления продукта – катализатора, растет, достигает максимума и снова уменьшается вследствие расхода исходного вещества. В таких реакциях возможно протекание явлений самоорганизации, приводящее к образованию пространственных и пространственно-временных диссипативных структур.
Ярким примером автокаталитического процесса является гомогенная периодическая химическая реакция окисления лимонной кислоты смесью бромата калия КВrО3 и сульфата церия Се(SО4)2, открытая и исследованная русскими химиками Белоусовым и Жиботинским в 1951 г. Смесь этих веществ, растворенная в разбавленной серной кислоте, дает реакцию восстановления церия: Се4+(синего цвета)→Се3+(красного цвета), а затем, когда свободный ион брома расходуется (выступает как ингибитор окисления церия), протекает обратная реакция окисления: Се3+→ Се4+. В результате возникает система, которая с идеальной периодичностью изменяет свой цвет с синего на красный и наоборот. Эти колебания можно рассматривать как химические часы, а саму систему как самоорганизующуюся. Начиная с некоторого момента числа колебаний системы, спонтанно возникают неоднородности концентрации и образуются устойчивые красные и синие слои.
3.3.3. Химическое равновесие. Принцип Ле Шателье
Многие химические реакции протекают таким образом, что исходные вещества целиком превращаются в продукты реакции или, как говорят, реакция идет до конца. Так, например, бертолетова соль при нагревании вся без остатка превращается в хлористый калий и кислород:
2КСlО3 = 2КСl + 3О2
Обратное получение бертолетовой соли из хлористого калия и кислорода оказывается невозможным. Такого рода реакции называются практически необратимыми, или односторонними.
Иной характер имеет реакция взаимодействия водорода с железной окалиной. Если пропускать водород над нагретой до высокой температуры железной окалиной, то последняя превращается в железо, а водород, соединяясь с кислородом окалины, образует воду:
Fe3O4 + 4Н2 = 3Fe + 4Н2О.
С другой стороны, пропуская при такой же температуре водяной пар на порошкообразным железом, можно получить железную окалину и водород. Эта реакция выражается тем же уравнением, что и предыдущая, если читать его справа налево:
3Fe + 4Н2О = Fe3O4 + 4Н2
Таким образом, при одной и той же температуре будут протекать две прямо противоположные реакции: из железной окалины и водорода будут получаться железо и водяной пар, а из последних – снова железная окалина и водород.
Процессы, которые при одних и тех же условиях могут идти как в ту, так и в другую сторону, называются обратимыми, или двусторонними.
Чтобы показать, что химический процесс обратим, в уравнении реакции заменяют знак равенства двумя стрелками, направленными в противоположные стороны:
Fe3O4 + 4Н2 3Fe + 4Н2О
Реакцию, протекающую в направлении слева направо, принято называть прямой, противоположную реакцию – обратной.
Характерная особенность обратимых реакций заключается им, что они не доходят до конца, если продукты реакции не удаляются из сферы взаимодействия (например, при реакциях между газами в закрытом сосуде). Исходные вещества, если даже они были и взяты в эквивалентных количествах, никогда не расходуются полностью на образование продуктов реакции. Реакция идет лишь до известного предела и затем как бы останавливается.
Если реакция обратима, т.е. она может протекать как в прямом, так и обратном направлениях, то с течением времени скорость обратной реакции будет возрастать, когда скорости прямой и обратной реакции становятся одинаковыми, наступает состояние химического равновесия.
N2(г) + 3H2(г)2NH3(г)
Установившееся между данными веществами химическое равновесие может сохраняться при неизменных условиях как угодно долго, но при изменении условий протекания реакции (температуры, давления, концентрации участвующих в реакции веществ), скорости прямого и обратного процессов изменяются неодинаково, и химическое равновесие нарушается.
Направление этого смещения подчиняется принципу Ле Шателье: при всяком внешнем воздействии на систему, находящуюся в состоянии химического равновесия, в ней протекают процессы, приводящие к уменьшению этого воздействия.
Так, повышение температуры приводит к смещению равновесия в направлении реакции, сопровождающейся поглощением теплоты, т. е. охлаждением системы; повышение давления вызывает смещение равновесия в направлении уменьшения общего числа молей газообразных веществ, т.е. в направлении, приводящем к понижению давления; удаление из системы одного из продуктов реакции ведет к смещению равновесия в сторону прямой реакции; уменьшение концентрации одного из исходных веществ приводит к сдвигу равновесия в направлении обратной реакции.
3.4. Развитие представлений об эволюционной химии
Эволюционная химия рассматривает вопросы эволюционного развития и совершенствования химической формы материи, в том числе в процессах ее самоорганизации до перехода в биологическую форму.
Из известных в настоящее время 112 химических элементов большинство принимают участие в жизнедеятельности живых организмов. Однако основу живых систем составляют только 4 элемент (98%) – углерод, водород, кислород, азот – макроэлементы. К микроэлементам относятся магний, натрий, калий, кальций, железо, калий, сера, фосфор, хлор; в сумме они составляют около 2-3%. К группе ультрамикроэлементов относят цинк, медь, йод, фтор, марганец, кобальт, кремний и др. (суммарное содержание порядка 0,1%). Из известных сегодня более 20 млн. химических соединений, основная доля приходится на долю органических вещества.
Химическая эволюция среди огромного количества соединений для построения живых организмов отобрала лишь несколько сотен. Так, в состав белков входит только 20 аминокислот, всего четыре нуклеотида участвуют в построении ДНК и РНК, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп.
Распределение элементов в земной коре и в живом организме:
Элементы земной коры, % Элементы организма человека, %
О 47 Н 63
Si 28 О 5,5
Аl 7,9 С 9,5
Fe 4,5 N 1,4
Са 3,5 Са 0,31
Na 2,5 Р 0,22
К 2,5 Сl 0,08
Mg 2,2 К 0,06
В основе химических процессов клетки лежит биокатализ, основанный на способности различных природных веществ, участвующих в химических реакциях, управлять ими, замедляя или ускоряя их протекание. Ферменты (энзимы) – белки, обладающих каталитической активностью.
В 1964 г. проф. А.П. Руденко представил теорию самоорганизации элементарных открытых каталитических систем, в последствии ставшая основой общей теории химической эволюции и биогенеза, раскрывающая многие важные эволюционные вопросы. Химическая эволюция представляет собой саморазвитие каталитических систем. Теория саморазвития открытых каталитических систем дает возможность определить рубеж перехода неживого в живое.
Контрольные вопросы
Что такое химическая связь?
От чего зависит выделение или поглощение энергии в экзотермических или эндотермических химических реакциях?
Сформулируйте основные законы термохимии.
Что такое реакционная способность вещества?
От чего зависит скорость протекания химических реакций?
Что такое химическое равновесие?
В чем заключается принцип Ле-Шателье применительно к химическим реакциям?
Назовите основные законы химического строения вещества.
Почему при обратимых реакциях особенно велика роль катализаторов?
Какова роль физики в понимании и решении проблем химического соединетия?
4. ГЕОЛОГИЧЕСКИЕ КОНЦЕПЦИИ ОПИСАНИЯ ПРИРОДЫ
4.1. Внутреннее строение и история образования Земли
Земля, как и другие планеты, возникла из солнечного вещества. Документальными свидетелями допланетной стадии развития вещества и ранних этапов существования Земли служат соотношения изотопов и радиоактивность химических элементов, из которых состоят Земля и метеориты. На основании данных астрофизики и космохимии можно предполагать, что задолго до формирования планет Солнечной системы их вещество прошло звездную стадию, включавшую синтез ядер атомов в недрах звезд, одна из которых была предком Солнечной системы. В результате взрыва этой звезды в плоскости ее экватора образовалась протопланетная туманность.
Исходным материалом для образования планет был так называемый звездный газ – разобщенные ионизированные атомы. По мере охлаждения из него возникали твердые частицы, и происходила их консолидация. Древнейшими твердыми телами Солнечной системы являются метеориты. По данным ядерной геохронологии, их возраст составляет 4,5–4,7 млрд. лет. Абсолютный возраст вещества Луны – 4,7 млрд. лет. Земля как планета имеет аналогичный возраст.
Земля как небесное тело образовалось при температурах ниже точки плавления составляющих ее материалов. Затем начался ее разогрев вследствие распада радиоактивных элементов. Кроме того, Земля нагревалась за счет кинетической энергии соударения метеоритных потоков. В результате произошла дифференциация химических веществ планеты на оболочки разного строения и состава.
4.1.1. Внутреннее строение Земли
Главными методами изучения внутренних частей нашей планеты являются, в первую очередь, геофизические наблюдения за скоростью распространения сейсмических волн, образующихся при взрывах или землетрясениях. Среди них выделяют волны продольных и поперечных колебаний. Продольные колебания представляют собой чередования сжатия и растяжения вещества в направлении распространения волны, поперечные колебания – чередующиеся сдвиги в направлении, перпендикулярном распространению волны.
Продольные волны распространяются как в твердом, так и в жидком веществе, поперечные – только в твердом. Следовательно, ecли при прохождении сейсмических волн через какое-либо тело будет обнаружено, что оно не пропускает поперечные волны, то можно считать, что это вещество находится в жидком состоянии. Если через тело проходят оба типа сейсмических волн, то это свидетельство твердого состояния вещества
Скорость волн увеличивается с возрастанием плотности вещества. При резком изменении плотности вещества скорость волн будет скачкообразно изменяться. Изучение распространения сейсмических волн через Землю показало, что имеется несколько определенных границ скачкообразного изменения скоростей волн. Поэтому предполагается, что Земля состоит из нескольких концентрических оболочек (геосфер).
На основании установленных трех главных границ раздела выделяют три главные геосферы: земную кору, мантию и ядро (рис.4.).
Земная кора
Внутреннее ядро
Верхняя мантия
Внешнее ядро
Нижняя мантия

Рис. 4. Строение Земли
Первая граница раздела характеризуется скачкообразным увеличением скоростей продольных сейсмических волн от 6,7 до 8,1 км/с. Эта граница получила название раздела Мохоровичича (в честь открывшего ее сербского ученого А. Мохоровичича), или просто граница М. Она отделяет земную кору от мантии. Плотность вещества земной коры не превышает 2,7 – 3,0 г/см3. Граница М расположена под континентами на глубине от 30 до 80 км, а под дном океанов - от 4 до 10 км.
Учитывая, что радиус земного шара равен 6371 км, земная шар представляет собой тонкую пленку на поверхности планеты, состав имеющую менее 1% ее общей массы и примерно 1,5% ее объема.
Мантия. Мантия – самая мощная из геосфер Земли. Она распростра няется до глубины 2900 км и занимает 82,26% объема планеты. В мантии сосредоточено 67,8% массы Земли. С глубиной плотность вещества мантии в целом возрастает с 3,32 до 5,69 г/см3, хотя это происходит неравномерно.
На границе с земной корой вещество мантии находится в твердом состоянии. Поэтому земную кору вместе с самой верхней частью мантии называют литосферой.
Агрегатное состояние вещества мантии ниже литосферы недостаточно изучено и по этому поводу имеются различные мнения. Предполагается, что температура мантии на глубине 100 км составляет 1100 – 1500°С, в глубоких частях – значительно выше. Давление на глубине 100 км оценивается в 30 тысяч атмосфер, на глубине 1000 км – в 1350 тысяч атмосфер. Несмотря на высокую температуру, судя по распространению сейсмических волн, вещество мантии преимущественно твердое. Колоссальное давление и высокая температура делают невозможным обычное кристаллическое состояние. По-видимому, вещество мантии находится в особом высокоплотном состоянии, которое на поверхности Земли невозможно. Уменьшение давления или некоторое повышение температуры должны вызвать быстрый переход вещества в состояние расплава.
Мантию подразделяет на верхнюю (слой В, простирающийся до глубины 400 км), промежуточную (слой С – от 400 до 1000 км) и нижнюю (слой D – от 1000 до 2900 км). Слой С именуют также слоем Голицына (в честь русского ученого Б.Б. Голицына, установившего этот слой), а слой В – слоем Гутенберга (в честь выделившего его немецкого ученого Б. Гутенберга).
В верхней мантии (в слое В) имеется зона, в которой скорость поперечных сейсмических волн значительно уменьшается. По-видимому, это связано с тем, что вещество в пределах зоны частично находится в жидком (расплавленном) состоянии. Зона пониженной скорости распространения поперечных сейсмических волн предполагает, что жидкая фаза составляет до 10%; это обусловливает более пластичное состояние вещества по сравнению с выше и ниже расположенными слоями мантии.
Относительно пластичный слой пониженных скоростей сейсмических волн получил название астеносферы (от греч. asthenes – слабый). Мощность ослабленной зоны достигает 200–300 км. Располагается она на глубине примерно 100–200 км, но глубина меняется: в центральных частях океанов астеносфера располагается выше, под устойчивыми участками материков опускается глубже.
Астеносфера имеет весьма важное значение для развития глобальных эндогенных геологических процессов. Малейшее нарушение термодинамического равновесия способствует образованию огромных масс расплавленного вещества (астенолитов), которые поднимаются вверх, способствуя перемещению отдельных блоков литосферы по поверхности Земли. В астеносфере возникают магматические очаги. Исходя из тесной связи литосферы с астеносферой эти два слоя часто объединяют под названием тектоносфера.
В последнее время внимание ученых привлекает зона мантии, расположенная на глубине 670 км. Полученные данные позволяют предполагать, что эта зона намечает нижнюю границу конвективного тепломассообмена, который связывает верхнюю мантию (слой В и верхнюю часть промежуточного слоя с литосферой.
В пределах мантии скорость сейсмических волн в целом возрастает в радиальном направлении от 8,1 км/с на границе земной кс ры с мантией до 13,6 км/с в нижней мантии. Но на глубине около 2900 км скорость продольных сейсмических волн резко уменьшаете до 8,1 км/с, а поперечные волны глубже вообще не распространяются. Этим намечается граница между мантией и ядром Земли.
Ученым удалось установить, что на границе мантии и ядра в интервале глубин 2700–2900 км происходит зарождение гигантских тепловых струй, периодически пронизывающих всю мантию и проявляющихся на поверхности Земли в виде обширных вулканических полей.
Ядро. Ядро Земли – центральная часть планеты. Оно занимает только около 16% объема Земли, но содержит более трети всей ее массы. Судя по распространению сейсмических волн, периферия ядра находится в жидком состоянии. В то же время наблюдения за происхождением приливных волн позволили установить, что упругость Земли в целом очень велика (больше упругости стали).
В ядре господствуют условия чрезвычайно высокого давления несколько миллионов атмосфер. В этих условиях происходит полное или частичное разрушение электронных оболочек атомов, вещество «металлизируется», т.е. приобретает свойства, характерные для металлов, в том числе высокую электропроводность. Возможно, что земной магнетизм является результатом электрических токов, возникающих в ядре в связи с вращением Земли вокруг своей оси.
Плотность ядра – 5520 кг/м3, т.е. вещество, составляющее ядро, в два раза тяжелее каменной оболочки Земли. Вещество ядра неоднородно. На глубине около 5100 км скорость распространения сейсмических волн вновь возрастает с 8100 м/с до 11000 м/с. Поэтому предполагают, что центральная часть ядра твердая.
Вещественный состав оболочек Земли. Исследование вещественного состава оболочек Земли представляет весьма сложную проблему. Для непосредственного изучения состава доступна лишь земная кора. Имеющиеся данные свидетельствуют, что земная кора состоит преимущественно из силикатов, а 99,5% ее массы составляют восемь химических элементов: кислород, кремний, алюминий, железо, магний, кальций, натрий и калий. Все остальные химические элементы в сумме образуют около 1,5%.
О составе более глубоких сфер земного шара можно судить лишь ориентировочно, используя геофизические данные и результаты изучения состава метеоритов. Поэтому модели вещественного состава глубинных сфер Земли, разработанные разными учеными, различаются. Можно с большой уверенностью предполагать, что верхняя мантия также состоит из силикатов, но по сравнению с земной корой содержащих меньше кремния и больше железа и магния, а нижняя мантия – из оксидов кремния и магния, кристаллохимическая структура которых значительно более плотная, чем у этих соединений, находящихся в земной коре.
Еще более гипотетичны представления о составе ядра Земли. Учитывая высокую плотность (9,4–11,5 г/см) и невозможность распространения поперечных сейсмических волн, ученые предполагают, что периферия ядра находится в состоянии расплава и состоит из оксидов или сульфидов железа с примесью кремния, углерода и некоторых других элементов. По причине еще большей плотности центральной части ядра можно ожидать, что она близка к составу железных метеоритов и состоит из никелистого железа.
4.1.2. История геологического строения Земли
Историю геологического строения Земли принято изображать в виде последовательно появляющихся друг за другом стадий или фаз. Отсчет геологического времени ведется от начала процесса образования Земли.
Фаза 1 (4,7–4 млрд. лет). Происходит образование Земли из газа, пыли и планетезималей. В результате энергии, выделяющейся в процессе распада радиоактивных элементов, и столкновения планетезималей Земля постепенно разогревается. Падение на Землю гигантского метеорита приводит к выбросу материала, из которого образуется Луна.
Согласно другой концепции Протолуна, находящаяся на одной из гелиоцентрических орбит, была захвачена Протоземлей, в результате чего образовалась двойная система Земля–Луна.
Дегазация Земли приводит к началу образования атмосферы, состоящей в основном из углекислоты, метана и аммиака. В конце рассматриваемой фазы за счет конденсации водяного пара начинается образование гидросферы.
Фаза 2 (4–3,5 млрд. лет). Возникают первые острова, протоконтиненты, сложенные из горных пород, содержащих преимущественно кремний и алюминий. Протоконтиненты незначительно возвышаются над еще очень мелководными океанами.
Фаза 3 (3,5–2,7 млрд. лет). Железо собирается в центре Земли и образует ее жидкое ядро, которое обусловливает возникновение магнитосферы. Создаются предпосылки для появления первых организмов, бактерий. Продолжается формирование континентальной коры.
Фаза 4 (2,7–2,3 млрд. лет). Образуется единый суперконтинент Пангея, которому противостоит суперокеан Панталасса.
Фаза 5 (2,3–1,5 млрд. лет). Охлаждение коры и литосферы приводит к распаду суперконтинента на блоки-микроплиты, пространство между которыми заполняют осадки и вулканы. В результате возникают складчато-надводные системы, и образуется новый суперконтинент – Пангея I. Органический мир представлен сине-зелеными водорослями, фотосинтезирующая деятельность которых способствует обогащению атмосферы кислородом, что ведет к дальнейшему развитию органического мира.
Фаза 6 (1700–650 млн. лет). Происходит деструкция Пангеи I, образование бассейнов с корой океанского типа. Формируются два cyперконтинента: Гондвана, куда вошли Южная Америка, Африка, Мадагаскар, Индия, Австралия и Антарктида, и Лавразия, включающая Северную Америку, Гренландию, Европу и Азию (кроме Индии). Гондвану и Лавразию разделяет море Тетис. Наступают первые ледниковые эпохи. Органический мир стремительно насыщается многоклеточными бесскелетными организмами. Появляются первые скелетные организмы (трилобиты, моллюски и др.). Происходит нефтеобразование.
Фаза 7 (650–280 млн. лет). Горный пояс Аппалачей в Америке соединяет Гондвану с Лавразией – образуется Пангея II. Обозначаются контуры палеозойских океанов – Палеоантлантического, Палеотетиса, Палеоазиатского. Гондвану дважды охватывает покровное оледенение. Появляются рыбы, позднее – амфибии. Растения и животные выходят на сушу. Начинается интенсивное углеобразование.
Фаза 8 (280–130 млн. лет). Пангея II пронизывается все более густой сетью континентальных рифов, щелевидных ровообразных растяжений земной коры. Начинается раскалывание суперконтинента. Африка отделяется от Южной Америки и Индостана, а последний – от Австралии и Антарктиды. Наконец Австралия отделяется от Антарктиды. Покрытосеменные растения осваивают значительные пространства суши. В животном мире господствуют пресмыкающиеся и земноводные, появляются птицы и примитивные млекопитающие. В конце периода погибают многие группы животных, в том числе огромные динозавры. Причины этих явлений обычно видят либо в столкновении Земли с крупным астероидом, либо в резком усилении вулканической деятельности. То и другое могло привести к глобальным изменениям (увеличению содержания углекислоты в атмосфере, возникновению крупных пожаров, похолоданию), несовместимым с существованием многих видов животных.
Фаза 9 (130 млн. лет–600 тыс. лет). Крупным изменениям подвергается общая конфигурация материков и океанов, в частности Евразия отделяется от Северной Америки, Антарктида – от Южной Америки. Распределение материков и океанов стало весьма близким к современному. В начале рассматриваемого периода климат на всей Земле теплый и влажный. Конец периода характеризуется резкими климатическими контрастами. Вслед за оледенением Антарктиды происходит оледенение Арктики. Складываются фауна и флора, близкие к современным. Появляются первые предки, современного человека.
Фаза 10 (современность). Между литосферой и земным ядром поднимаются и опускаются потоки магмы, сквозь щели в коре они прорываются наверх. Обломки океанической коры опускаются вплоть до самого ядра, а затем всплывают и, возможно, образуют новые острова. Литосферные плиты сталкиваются друг с другом и находятся под постоянным воздействием потоков магмы. Там, где плиты расходятся, образуются новые сегменты литосферы. Постоянно происходит процесс дифференциации земного вещества, который преобразует состояние всех геологических оболочек Земли, в том числе и ядра.
4.2. Современные концепции развития геосферных оболочек
4.2.1. Концепция глобальной геологической эволюции Земли
Разработка концепции глобальной эволюции Земли позволила представить развитие геосферных оболочек.
Концепция глобальной эволюции Земли в объяснении динамических истоков развития геосферных оболочек решающее значение придает:
однородности химического состава первичной Земли;
изменению ее термодинамических состояний под воздействием энергетических потоков;
приобретению расплавленным веществом Земли текуче-подвижных состояний, приводящих к его химико-плоскостной дифференциации;
образованию в результате дифференциации вещества Земли ее геосферных оболочек;
эволюции геосферных оболочек в процессе непрекращающихся изменений динамических характеристик Земли.
Каждый новый шаг в осмыслении возникновения, эволюции и развития (коренных преобразований) геосферных оболочек требует четкого выделения тех динамических факторов, которые детерминируют геологические события. В этом состоит суть, главное содержание концепции глобальной эволюции Земли.
Энергетическая динамика Земли определяется в основном тремя составляющими: энергией гравитации (около 82%), энергией радиоактивного распада (около 12%), приливной энергией (около 4%). Что касается солнечной энергии, то она, частично поглощаясь внешними геосферными оболочками, отражается ими же в космос. Земля стала тектонически активной далеко не сразу, а лишь после ее разогрева, который из-за наличия приливных сил (высота волн прилива достигала 1 км) оказался наибольшим в приповерхностных слоях планеты. Высокие температуры на поверхности способствовали постепенному разогреванию вещества планеты, переводя его в расплавленное состояние. Вещества Земли, обладавшие наибольшей плотностью, стали диффундировать в центр планеты.
В первичном составе Земли содержалось много железа (около 13%) и его двухвалентной окиси (около 24%).
Железо появилось отчасти за счет межзвездной материи, из которой образовалась Земля, и захвата ею метеоритов, в которых содержалось около 30% железа. Стекшие железа и его окислов в центр планеты привело к образованию ядра Земли. Более легкие вещества (SiO2, MgO и др.) при этом переходили в верхние слои планеты, где они, остывая, образовали астеносферу и литосферу. Собственно мантия Земли оказалась заключенной между ядром планеты и ее твердыми приповерхностными областями, т.е. литосферой. Дегазация планеты привела к образованию атмосферы Земли. За счет конденсации водяных паров атмосферы образовалась гидросфера.
Итак, было время (4,6–4,0•109 лет назад), когда Земля не была дифференцирована на геосферные оболочки. Все геосферные оболочки являются результатом дифференциации вещественного составам первичной Земли. Атмосфера оказывает давление на литосферу и гидросферу, две последние упруго сжимают мантию планеты, которая в свою очередь спрессовывает ядро Земли. Если же двигаться от центра планеты к ее периферии, то динамическая картина оказывается другой. Ядро Земли притягивает к себе вещество всех других геосферных оболочек, охватывает их обручем инициированного им магнитного поля, нагревает мантию и достигающие его оболочки литосферы. Мантия Земли передает мощные потоки тепловой энергии литосфере, раздвигает океаническое дно и перемещает литосферные плиты. Литосфера и гидросфера оказывают тепловое воздействие на атмосферу, передавая ей также огромные массы вещества являющиеся продуктами выветривания и испарения.
Таким образом, геодинамическая активность Земли также имеет свою историю: она находится в полном соответствии с историей эволюции геосферных оболочек.
4.2.2. История формирования геосферных оболочек
Рассмотрим в свете концепции глобальной эволюции Земли историю формирования основных геосферных оболочек.
Этапы развития Земли с позиций концепции глобальной геоэволюции.
С позиций концепции глобальной геоэволюции в развитии Земли выделяют следующие этапы:
образование планеты (4,7–4 млрд. лет назад);
нарастание тектонической деятельности Земли и достижение ею своего пика (4–2,2 млрд. лет назад);
период относительного постоянства в тектонической деятельности планеты (2,2 млрд. лет назад – 6 млрд. лет вперед);
угасание тектонической деятельности Земли (0,6 млрд. лет назад – 1,6 млрд. лет вперед);
остывание планеты (1,6–5 млрд. лет вперед);
6)опаление Земли в результате расширения перед угасанием Солнца (около 5 млрд. лет вперед).
Формирование ядра. Формирование ядра Земли началось примерно 4,6 • 109 лет назад. Расчеты показывают, что оно было особенно интенсивным в период (3–2,6) • 109 лет назад. После 2,6 млрд. лет наращивание массы земного ядра начало резко, а потом плавно убывать. В наши дни масса ядра увеличивается, согласно расчетам, на 130 млрд. т в год. «Металлическое железо» покинуло мантию Земли примерно 500 млн. лет назад, оставшийся в ней магнетит (Fe3O4) распадается по схеме: 2Fе3O4 →6FeO + O2, при этом FeO переходит но внешнее ядро Земли. Остывание Земли привело к частичному или полному затвердеванию как ее мантии, так и ядра.
Формирование мантии. Мантия по своему вещественному составу наиболее близка к составу первичного вещества Земли. Тем не менее, именно в ней процессы химико-плотностной дифференциации идут наиболее энергично: на протяжении 4 млрд. лет она проходит все новые стадии своего вещественного обеднения. Тяжелое вещество уходит к центру планеты, в ее ядро. Легкие элементы перемещаются в лито-, атмо- и гидросферу. Из мантии Земли полностью исчезли FeS, Fe, Ni. По сравнению с составом первичной Земли она существенно обеднела легкими веществами (К2О, Na2O, N2, H2 и др.) Вместе с тем происходящая в мантии химико-плотностная дифференциация приводит к росту в процентном содержании оксидов кремния (SiO2) и магния (MgO). В сумме эти два оксида составляют около 83% состава современной мантии (против 57% в составе первичного вещества Земли).
Современная мантия охвачена мощными конвективными движениями, за счет которых тепловая энергия ядра и мантии передается другим геосферным оболочкам. Теплопотери Земли приведут к ее остыванию и переходу мантии в твердое литосферное состояние.
Формирование литосферы. Литосфера образовалась в процессе остывания и кристаллизации частично расплавленного вещества мантии Земли. Ее часто называют «силикатным льдом». Имеется в виду, что литосфера, состоящая в основном из силикатов, т.е. солей кремниевых кислот, содержащих SiO2, формируется подобно образованию льда при замерзании воды. Формирование литосферы началось 4–3,5 млрд. лет назад. Около 2 млрд. лет ушло на формирование cyперконтинента Пангеи. Последующая тектоническая деятельность Земли привела к раскалыванию Пангеи и образованию новых суперконтинентов.
Современная история литосферы связана прежде всего с тектоникой океанических плит. При раздвижении литосферы вещество астеносферы внедряется в разломы рифтовых зон и, охлаждаясь, образует молодую океаническую литосферу. Океаническая кора cпособна надвигаться на концы континентальных плит, в результате чего образуются складчатые структуры. Обломки океанических литосферных плит, увлекаясь мантийными потоками, опускаются вплоть до ядра Земли, перемешиваются с другим мантийным веществом и вновь поднимаются на поверхность. Так осуществляются циклы тектонической деятельности Земли. В далеком будущем непременно произойдет их замедление, вплоть до полной остановки.
Формирование гидросферы. Молодая Земля была лишена гидросферы. Последняя появилась благодаря дегазации Земли, инициируемой изливавшимися на ее поверхность мантийными расплавами, которые, попав в условия с минимальным давлением, вскипали (как известно, температура кипения тем ниже, чем меньше давление) и выделяли летучие вещества, в том числе пары воды. Чем сильнее нарастали конвективные явления в мантии, тем чаще ив большей массе извергались на поверхность Земли потоки магмы и тем больше становился объем первоначально неглубокого океана. Из-за поглощения части воды океанической, а также континентальной корой глубина океана увеличивалась медленно. И лишь после полного насыщения водой слоя океанической коры, а произошло это около 2,2 млрд, лет назад, дно океана стало быстро опускаться (до средней глубины современного океана).
Наибольший приток воды происходил в период охвата конвективными движениями всей мантии Земли, т.е. около 2,6 млрд. лет назад. Приток воды в Мировой океан имеет место и в наши дни, он будет продолжаться и в дальнейшем. Ослабление тектонической активности Земли, остывание ее мантии, образование в этой связи особо глубоких океанических впадин и поглощение части воды глубоко стегающими осадочными породами океанической литосферы приведет к тому, что будут вновь видны срединно-океанические хребты.
Формирование атмосферы. Согласно концепции глобальной эволюции Земли история атмосферы связана с дегазацией планеты отнюдь не меньше, чем история гидросферы. Полагают, однако, что уже на ранних этапах своей эволюции (4,7–4 млрд. лет назад) Земля, еще не приобретя гидросферы, уже обладала атмосферой, но крайне разреженной. Она состояла главным образом из летучих соединений, которые распространены в космосе, т.е. Н2, Не, N2, CH4, NH3, С02, СО.
Рождение плотной атмосферы оказалось связанным с выделением тех летучих соединений, которые попали на Землю в связанном состоянии: вода – с гидросиликатами, азот – с нитритами и нитратами, углекислый газ – с карбонатами и т.д. Подлинным динамическим источником атмосферы Земли оказалась начавшаяся ее активная дегазация (4 млрд. лет назад). Около 3 млрд. лет назад Земля пыла окутана плотной, состоящей в основном из азота (N2) и углекислого газа (С02) атмосферой с давлением до 4 атм. Последующая история Земли связана в основном со своеобразной «заменой» углекислого газа кислородом.
Насыщение слоя океанической коры водой сопровождалось связыванием С02 в карбонаты (доломиты), поскольку при избытке углекислого газа в атмосфере реакции гидратации сопровождаются его связыванием в карбонаты.
Это привело к извлечению углекислого газа из атмосферы и снижению его парциального давления почти до современного. Обеднение атмосферы СО2 –газом, задерживающим инфракрасное (тепловое) излучение Земли, привело к резкому снижению приземной температуры (с 90 до 6°С), которое 2,4 млрд. лет назад сопровождалось грандиозным оледенением.
Активную роль в извлечении углекислого газа из атмосферы сыграли также зеленые растения и фотосинтезирующие микроорганизмы. Речь идет о процессе фотосинтеза, суммарное выражение которого выглядит следующим образом:

Насыщение атмосферы кислородом происходило также благодаря фотолизу паров воды под воздействием коротковолнового излучения Солнца:
Н2О -» ОН + + Н +, 4ОН +- -> О2 + 2Н2О,
а также галогенизации оксидов щелочных и щелочноземельных металлов:
2Na2O + 2С12 – 4NaCl + О2; 2СаО + 2F2 = 2CaF2 + О2.
Далеко не весь кислород переходил непосредственно в атмосферу. Его мощным поглотителем являлось свободное железо:
3Fe + 2О2 -> Fe3O4 (Fe2O3 • FeO).
Свободное железо исчезло из мантии Земли около 600 млн. назад. Это способствовало увеличению концентрации кислорода в атмосфере, что благоприятствовало быстрому развитию многоклеточных организмов.
В современных условиях выделяющийся в мантии кислород частично поглощается:
4FeO + О2 -> 2Fe2O3.
Расчеты показывают, что через 600 млн. лет содержащееся в мантии железо окажется в состоянии магнетита (Fe3O4). Магнетит устойчив в мантии, но при переходе в ядро Земли он распадается:
2Fe3O4 -> 6FeO + О2.
Свободный кислород, не встречая препятствий, устремится в атмосферу. Это, согласно расчетам, приведет к быстрому росту давления атмосферы (до 10 атм), приземная температура достигнет 250°С. После вскипания воды океанов давление возрастет до 350 атм, а приземная температура – до 450°С. В новых условиях жизнь окажется невозможной.
Подводя итог, отметим, что с позиций концепции глобальной эволюции Земли развитие геосферных оболочек связано главным образом с динамическими факторами. Среди них наиглавнейшим является энергия, выделяемая в процессе химико-плотностной дифференциации вещества в мантии и ядре Земли. Механизм химико-плотностной дифференциации вещества определяет как само наличие геологических явлений, так и их специфику.
4.3. Литосфера как абиотическая основа жизни
4.3.1. Понятие литосферы
Литосфера – внешняя твердая оболочка Земли, которая включает всю земную кору и часть верхней мантии. Это особый слой толщиной порядка 100 км.
Нижняя граница литосферы нечеткая и определяется резким уменьшением вязкости пород, изменением скорости распространения сейсмических волн и увеличением электропроводности пород.
Актуальность изучения литосферы обусловлена тем, что она является источником всех минеральных ресурсов, одним из основных объектов антропогенной деятельности. В верхней части континентальной земной коры развит почвенный слой, значение которого для человека трудно переоценить. Почва – органоминеральный продукт, созданный в результате многолетней деятельности живых организмов и воздействия абиотических факторов: воды, воздуха, солнечного тепла, света. Она является одним из важнейших природных ресурсов. В зависимости от климатических и геолого-географических условий почвы имеют толщину от 15–25 см до 2–3 м.
Почва возникла вместе с живым веществом и развивалась под влиянием деятельности растений, животных и микроорганизмов, пока не стала очень ценным для человека плодородным субстратом. Основная масса организмов и микроорганизмов литосферы сосредоточена в почве на глубине не более нескольких метров.
Современные почвы являются трехфазной системой (твердые частицы, вода и газы, растворенные в воде), состоящей из смеси минеральных частиц (продукты разрушения горных пород) и органических веществ (продукты жизнедеятельности микроорганизмов и грибов). Почвы играют огромную роль в кругообороте воды, углекислого газа и других веществ.
С разными породами земной коры, как и с ее тектоническими структурами, связаны разные полезные ископаемые: горючие, металлические, строительные и т.д.
4.3.2. Экологический функции литосферы
Обычно выделяют четыре экологические функции литосферы: ресурсную, геодинамическую, геофизическую и геохимическую.
Ресурсная функция литосферы определяется ролью содержащихся в ней ресурсов, а также факторами пространственного характера, значимыми для жизни биоты и человека. Общеизвестно, что литосфера содержит различные материальные ресурсы, большинство из которых активно используются человеком. Именно в этой связи наблюдается значительная ресурсная напряженность, которая не только не убывает, но и год от года нарастает.
Человечество стоит перед необходимостью системного гeopecypcного концептуального мышления. Весьма актуальные призывы и практические акции к ресурсосбережению необходимы, но недостаточны. Человечество пока намного более успешно разрушает, чем восстанавливает литосферу. С большим трудом осознается, что объектом охраны является такой грандиозный объект, как литосфера.
Геодинамическая функция литосферы связана с масштабными природными и антропогенными процессами, влияющими на жизнь биоты и человека. Речь идет об аномалиях и напряженных состояниях горных массивов, участках повышенной трещиноватости и проницаемости, регионах, опасных в сейсмическом отношении или охваченных деятельностью вулканов.
Геохимическая функция литосферы касается в основном тех геохимических неоднородностей, которые представляют опасность для биоты, в том числе для человека. Речь идет, прежде всего, о химическом загрязнении, привнесении в литосферу различных токсикантов (тяжелых металлов, пестицидов, пластмасс). Многие химические вещества обладают канцерогенными и мутагенными свойствами.
Геофизическая функция литосферы реализуется посредством физических факторов, радиации, шумовых и тепловых эффектов. На поверхности Земли постоянно наблюдается естественный радиационный фон, который с медицинской точки зрения, как правило, не является вредным. Однако есть такие регионы, например, в Индии и Бразилии, где радиационный фон превышает предельно допустимый в 100 и даже 1000 раз.
4.3.3. Литосфера как абиотическая среда
В литосфере происходит множество процессов (сдвиги, сели, обвалы, эрозии и др.), имеющих целый ряд неблагоприятных экологических последствий в определенных регионах планеты, а иногда приводящих к глобальным экологическим катастрофам, цунами, землятрясениям и т.д. Перечислим некоторые из них.
Выветривание. Разрушение и преобразование горных пород в результате выветривания происходит под воздействием различных природных факторов – климата, рельефа, водной среды и веществ атмосферы. В зависимости от сочетания можно выделить различные виды выветривания, в частности физическое, химическое и биохимическое.
Причинами физического выветривания являются перепады суточных температур, рост кристаллов солей, расклинивающее влияние замерзающей воды в трещинах и порах и корневой системы деревьев
Химическое выветривание происходит при совместном воздействии температуры и агрессивной водной среды, содержащей в растворенном состоянии различные химические соединения.
Биохимическое выветривание осуществляется в результате воздействия органических кислот, выделяемых организмами, и преобразования их отмерших остатков.
Стадийность парообразовательных процессов – окисление, гидратация, растворение и гидролиз – приводит к формированию определенной зональности профилей выветривания. Коры выветривания играют важную экологическую роль. С ними связаны месторождения алюминия, никеля, кобальта, меди, железа и различные геохимические аномалии.
Оползни и сели. Под воздействием гравитации происходит перемещение обломков горных пород по поверхности Земли. Скорость и перемещения зависит от размеров обломков и уклона склона. Часто гравитационные процессы называют склоновыми. Возникшие в результате склоновых процессов отложения называются коллювием.
Гравитационные процессы разделяются на провальные, обвальные и медленные. В результате водно-гравитационных процессов возникают оползни и сели. Гравитационные процессы на конитинентальных склонах приводят к возникновению огромных по размерам подводных оползней.
Геологическая деятельность ветра. Часто геологическую деятельность ветра называют эоловой (по имени древнегреческого бога ветров – Эола). Геологическая деятельность ветра слагается из дефляции, переноса рыхлого материала и аккумуляции. Особенно ярко эоловая деятельность проявляется в пустынных областях и оголенных, лишенных растительного покрова, широких и плоских речных долинах и на побережьях крупных озер, морей и океанов. Ветер не только разрушает, переносит и отлагает тонкий песчаный материал, но и создает эоловый песчаный рельеф – барханы, продольные гряды, дюны и эоловую рябь. С деятельностью ветра связано образовани лёсса. В основном эоловая деятельность наносит ущерб хозяйственной деятельности человека.
Поверхностные водостоки. Деятельность поверхностных вод начинается с эрозии, плоскостного смыва, накопления делювия, формирования оврагов и временных горных потоков, в устье которых формируются конусы выноса, сложенные пролювиальным и делювиальным материалом. Реки производят большую эрозионную, переносную и аккумулятивную работу и в этом смысле играют важнейшую экологическую роль. В речных долинах имеются поймы и надпойменные террасы. Последние могут быть эрозионными и аккумулятивными. В устьевых частях рек в зависимости от ряда причин формируются дельты или эстуарии.
Подземные воды. Подземные воды по своему происхождению подразделяются на следующие типы: инфильтрационные, конденсационные, седиментогенные, магматогенные, или ювенильные, иметаморфогенные. Выделяются почвенные воды и верховодка; в зоне полного насыщения распространены грунтовые воды, межпластовые ненапорные воды и межпластовые напорные, или артезианские, воды. Перемещение подземных вод зависит от водопроницаемости пород, их трещиноватости. С подземными водами связаны карстовые процессы, выражающиеся в создании поверхностного и подземного рельефа, а также своеобразных аккумулятивных отложений и форм. К числу поверхностных форм карстового рельефа относятся карры, поноры, карстовые воронки, котловины, полья, а к подземному — пещеры и каналы (шахты). В пещерах формируются сталактиты и сталагмиты.
Озера, водохранилища и болота. Озера и болота располагаются в понижениях рельефа и заполняются проточной или застойной водой. Озерные котловины создаются различными эндогенными и экзогенными геологическими процессами. В то время как в озерах экзогенные процессы складываются из абразионной транспортирующей и аккумулятивной деятельности, в болотах протекают только аккумулятивные процессы. В озерах и болотах формируются в основном тонкие обломочные и органогенные осадки. Среди болот различают озерные, лесные, луговые, верховые, низинные и приморские. Созданные человеком водохранилища по характеру геологических процессов относятся к озерам.
Многолетнемерзлые породы и грунты. Многолетнемерзлые породы и грунты занимают около 60% территории России, но также широко распространены в Канаде и на Аляске. Мощность криолитозоны достигает 900 м. Имеются районы, где глубина многолетнего промерзания составляет 1500 м. В криолитозоне большое значение имеют различные типы льдов: погребенный, повторно-жильный, миграционный. Среди подземных вод в криолитозоне выделяют надмерзлотные межмерзлотные, внутримерзлотные и подмерзлотные.
Мерзлотно-геологические процессы и возникающие в результате их деятельности формы рельефа весьма различны. На склонах происходят процессы, которые приводят к возникновению солифлюкционных террас. Из-за деградации криолитозоны появляется термокарст.
Материковые и горные ледники. Площадь современных материков покровных (Гренландия и Антарктида) и горных ледников превышает 160 млн. км2. Предгорные ледники представляют собой слившиеся горные ледники, выходящие в предгорья. Движение ледников связано с пластичным или высокопластичным течением льда. При движении ледников происходит перенос обломочного материала и его аккумуляция.
К ледниковым отложениям относятся морены, среди которых различают донные, абляционные, конечные; к водно-ледниковым – озы, комы и камовые террасы. В приледниковых областях выделяют зандры, лимногляциальные (озерно-ледниковые) отложения и лёссы.
Осадки морей и океанов. В морях и океанах накапливаются различные типы осадков, среди которых выделяют терригенные (обломочные) хемогенные, органогенные и вулканогенные. Распространение генетических типов осадков зависит от климатической, вертикальной и циркумконтинентальной зональностей. За счет процессов диагенеза осадки с течением времени преобразуются в горные породы.
Извержения вулканов. Магматические горные породы возникают из алюмосиликатного расплава – магмы. Разнообразие магматических пород определяется дифференциацией магмы и ее взаимодействием с вмещающими образованиями. Флюидное давление играет большую роль в кристаллизации магмы. Типы вулканических построек и разнообразие извержений зависят от состава магмы, формы подводящего канала и концентрации летучих веществ. Распространение вулканов связано с активными границами литосферных плит.
Контрольные вопросы
1. Какова история образования оболочек Земли?
2. Каков главный метод изучения внутреннего строения Земли?
3. Перечислите основные геосферы.
4. Что такое граница Мохоровичича?
5. Назовите основные фазы образования Земли.
6. Что такое суперконтиненты Пангея I и II?
7. В какие периоды возникла атмосфера Земли?
8. Каковы основные экологические функции литосферы?
9. Какими факторами определяется энергетическая динамика Земли?
10. В чем суть концепции литосферных плит?
5. БИОЛОГИЧЕСКИЕ КОНЦЕПЦИИ ОПИСАНИЯ ПРИРОДЫ
5.1. Особенности биологического уровня организации материи
Биология (от греч. «биос» – жизнь, «логос» – учение) – наука о живой природе.
Биология изучает живые организмы – вирусы, бактерии, грибы, животных и растения. В настоящее время на Земле описано около 3 млн. видов живых организмов (более 100 тыс. видов грибов, около 500 тыс. видов растений и более 2 млн. видов животных). Однако реальное число видов на Земле в несколько раз больше. Современный видовой состав – это лишь около 5% от видового разнообразия жизни за период ее существования на Земле.
По изучаемым объектам биологию подразделяют на самостоятельные науки – микробиологию, ботанику, зоологию, включающие частные дисциплины: систематику (изучает разнообразие и родство разных групп живых организмов), морфологию (исследует внешнее строение органов и их видоизменения), анатомию (изучает внутренне строение), физиологию (изучает процессы, протекающие в живых организмах).
По уровню изучения живой материи различают: молекулярную биологию, учение о клетке – цитологию (от греч. «цитос» – клетка), учение о тканях – гистологию (от греч. «гистос» – ткань), науку об органах – анатомию, биологию организмов, популяций, видов и т.д.
Единые закономерности, характерные для всего живого и раскрывающие сущность жизни, ее формы и развитие, составляет предмет общей биологии. Универсальные свойства живого – наследственность и изменчивость изучает генетика. Взаимоотношения живых организмов между собой и со средой их обитания изучает экология (от греч. «ойкос» – дом, жилище, местообитание).
Разнообразие используемых методов и подходов химии, физики и математики для исследования живой природы позволяет выделить биохимию, молекулярную биологию, биофизику, генную инженерию (создание организмов с новыми комбинациями наследственных признаков и свойств) и др.
Мир живых существ, включая человека, представлен биологическими системами различной структурной организации и разного уровня соподчинения. Все живые организмы (кроме вирусов) состоят из клеток. Клетки одноклеточных организмов представляют собой целостные, способные выполнять все необходимые для обеспечения жизнедеятельности функции. Клетки многоклеточных организмов специализированы, т.е. могут осуществлять лишь какую-либо одну функцию и не способны самостоятельно существовать вне организма, взаимосвязь многих клеток приводит к созданию нового качества, не равнозначного простой их сумме. Элементы организма – клетки, ткани и органы – в сумме еще не представляют собой целостный организм. Лишь соединение их в исторически сложившийся в процессе эволюции порядок и их взаимодействие образуют целостный организм, способный существовать в окружающей среде в динамическом равновесии с ней.
Происхождение жизни на Земле. Основные теории возникновения жизни. Креационизм, самопроизвольное зарождение жизни, стационарного состояния, панспермии. Теория биохимической эволюции. Теория коацерватов А.И. Опарина: органические вещества могли синтезироваться из более простых соединений под действием интенсивной солнечной радиации. Решающую роль в превращении неживого в живое сыграли белки. Опыты Стенли Миллера. Природа первых организмов – гетеротрофы. Симбиогенез как возможный путь формирования клетки эукариот.
Цитология – наука о клетке. Клетка – система мембран. Впервые название клетка применил Роберт Гук. Одноклеточные организмы открыл Антон Левенгук. Т. Шванн сформулировал клеточную теорию. Карл Бэр открыл яйцеклетку млекопитающих.
Современная клеточная теория:
Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого.
Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
Размножение клеток происходит путем их деления и каждая клетка образуется в результате деления исходной (материнской) клетки.
В сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.
Прокариоты и эукариоты. Особая - неклеточная форма жизни – вирусы.
Оболочка клетки. Многослойная мембрана, состоящая из белков и липидов. Функции: барьер, транспорт – обмен веществ, механическое соединение за счет выростов и каналов. Диффузия, осмос, фильтрация, избирательная проницаемость, фагоцитоз, пиноцитоз. Органоиды – органы клетки и выполняемые ими основные функции.
Химический состав клетки: липиды, углеводы, белки.
Состав и функции белков. Полимеры состоят из многих мономеров – аминокислот. У всех аминокислот есть одинаковая часть, состоящая из аминогруппы и карбоксильной группы другая часть аминокислот разная – называется радикалом. Структура белка: первичная, вторичная, третичная, четвертичная.
Нуклеиновые кислоты. ДНК, РНК – полимеры, состоят из нуклеотидов. Состав: азотистое основание, углевод и фосфорная кислота. Аденин, гуанин, цитозин, тимин. Удвоение молекулы ДНК происходит по принципу комплиментарности.
Обмен веществ. 1) Обеспечение клетки строительным материалом – пластический обмен. 2) Обеспечение клетки энергией – энергетический обмен. Постоянный обмен веществ и энергии. Открытая система
Энергетический обмен (в частности, получение клеткой энергии) происходит за счет расщепления аденозинтрифосфорной кислоты до аденозиндифосфорной кислоты. АТФ по структуре относится к нуклеотидам. В ней содержатся остатки азотистого основания (аденина), углевода (рибозы) и три остатка фосфорной кислоты. Под действием определенных ферментов она подвергается гидролизу, т.е. присоединяет молекулу воды и расщепляется. Восстановление запаса АТФ идет в две стадии: гликолиз – бескислородное расщепление и дыхание – кислородное расщепление. Участвуют многочисленные ферменты. Основное условие нормального течения кислородного процесса – целостность митохондриальных мембран.
Автотрофы и гетеротрофы. Фотосинтез – синтез органических соединений, идущий за счет энергии солнечного излучения. Световая фаза и темновая фаза. Хемосинтез присутствует у азотфиксирующих и нитрифицирующих бактерий. Окисление аммиака в азотную кислоту. Окисление азотистой кислоты в азотную.
Код ДНК. Отрезок молекулы ДНК, содержащий информацию о первичной структуре одного определенного белка, называется геном. В молекуле ДНК содержится несколько сотен генов. На молекулах ДНК записана и хранится информация о первичной структуре всех белков данной клетки. Транскрипция. Размножение и индивидуальное развитие организмов. Одно из свойств живого – дискретность, то есть на любом уровне организации живая материя представлена элементарными структурными единицами. Для клетки – это органоид и его целостность обуславливается постоянным воспроизведением ноорганоидов вместо износившихся. Каждый организм состоит из клеток. Развитие и существование организма обеспечивается размножением клеток.
Животный мир и мир растений состоят из отдельных единиц – видов. Каждая особь данного вида смертна и существование видов поддерживается размножением организмов. Таким образом, дискретность жизни предполагает ее воспроизводство, то есть процесс размножения.
Две основные формы размножения – половое и бесполое, половое – смена поколений и развитие организмов при образовании специализированных половых клеток. При бесполом размножении новая особь появляется из неспециализированных теток тела - соматических, неполовых.
При бесполом размножении процесс деления клеток называется митозом. Генотип идентичен материнскому.
Половое размножение дает генетическое преимущество по сравнению с бесполым. Происходят комбинации генов, принадлежащих обоим родителям. Поскольку рекомбинация генов происходит в каждом поколении, то это дает значительно более богатый материал для эволюции, чем мутационный процесс.
Основное направление эволюции полового размножения – сингамия, т.е. оплодотворение, при котором обязательно слияние двух половых клеток, происходящих от разных особей. Такой тип полового размножения наилучшим образом обеспечивает генетическое разнообразие потомства.
Гаметогенез – развитие половых клеток. В них содержится гаплоидный набор хромосом – в два раза меньше, чем в соматических клетках. Процесс образования половых клеток – мейоз. Биологическая роль мейоза заключается в поддержании постоянства хромосомного набора, свойственного данному виду организмов. Функции сперматозоида – внесение генетической информации в яйцеклетку и активация ее развития. В яйцеклетке же заложены все основные факторы, позволяющие организму развиваться. У некоторых животных яйцеклетка может развиваться без оплодотворения – партеногенез. При партеногенезе образуются особи только одного пола – мужского или женского.
Индивидуальное развитие (онтогенез) – процесс реализации генетической информации, полученной от родителей. Эмбриональный и постэмбриональный периоды.
Начальные стадии эмбрионального развития.
1) Дробление – многоклеточный зародыш – бластула. Клетки имеют диплоидный набор хромосом, одинаковы по строению, т.е. клетки бластулы не дифференцированы.
2) Гаструляция – образуются первые эмбриональные ткани. Происходит дифференциация клеток. Возникают два зародышевых листка – наружный эктодерма и внутренний – энтодерма. Затем формируется новый зародышевый листок – мезодерма. Клетки каждого листка отличаются особенностями строения. Зародышевые листки занимают определенное положение в зародыше и дают начало соответствующим органам.
3) Первичный органогенез – образование комплекса осевых органов зародыша – нервной трубки, хорды, кишечной трубки.
Из одних и тех же зародышевых листков у разных видов образуются одни и те же ткани и органы. Это говорит о гомологичности зародышевых листков, что, в свою очередь, является одним из доказательств единства животного мир.
Постэмбриональный период развития начинается в момент рождения или выхода организма из яйцевых оболочек. Развитие может быть прямым или сопровождаться метаморфозом. При прямом развитии из яйцевых оболочек или из тела матери выходит организм небольших размеров, но в нем заложены все основные органы, свойственные взрослому животному (беспозвоночные с неполным превращением, пресмыкающиеся, птицы, млекопитающие). В период постэмбрионального развития происходит значительный рост организма и половое созревание.
При развитии с метаморфозом из яйца выходит личинка, подчас не имеющая сходства со взрослым организмом, со специальными личиночными органами, которые отсутствуют во взрослом состоянии. Личинка растет и развивается. Личиночные органы заменяются на органы взрослого организма. Метаморфоз связан с переменой образа жизни или среды обитания. Значение заключается в том, что личинки могут самостоятельно питаться и растут, накапливая клеточный материал для формирования органов, свойственных взрослым животным. Смена жизненных фаз позволяет виду разнообразнее использовать экологические ниши, имеющиеся в биоценозе, а также несет расселительную функцию.
Закон зародышевого сходства Карла Бэра. Появление в эмбриональном периоде развития современных животных признаков, свойственных далеким предкам, отражает эволюционные преобразования в строении органов.
Биогенетический закон Мюллера и Геккеля. Онтогенез каждой особи есть краткое и быстрое повторение филогенеза вида, к которому эта особь относится.
А.Н.Северцов установил, что в индивидуальном развитии проявляются признаки не взрослых предков, а их зародышей. Таким образом, основу филогенеза составляют изменения, происходящие в онтогенезе отдельных особей.
Генетика изучает два фундаментальных свойства живых организмов – наследственность и изменчивость. Наследственность – это свойство родителей передавать свои признаки и особенности развития следующему поколению. Обеспечение преемственности свойств – лишь одна из сторон наследственности; вторая сторона – обеспечение точной передачи специфического для каждого организма типа развития, становления в ходе онтогенеза определенных признаков и свойств, определенного типа обмена веществ. Клетки, через которые осуществляется преемственность поколений, – половые при половом размножении и соматические при бесполом – несут в себе только зачатки возможности развития признаков и свойств. Эти зачатки получили название генов. Ген – это участок молекулы ДНК (или участок хромосомы), определяющий возможность развития отдельного элементарного признака. При наличии в организме (генотипе) какого-либо гена признак, обусловленный этим геном, может и не проявиться. Возможность развития признаков в значительной степени зависит от условий внешней среды. У всех организмов данного вида каждый ген располагается в одном и том же месте (или локусе) строго определенной хромосомы. Гаплоидный и диплоидный набор хромосом. Аллельные гены и множественный аллелизм. Генотип и фенотип.
Законы Менделя. Гибридное потомство. Явление преобладания у гибрида признака одного из родителей Мендель назвал доминированием. Признак – доминантный. Подавляемый – рецессивный. Гомозиготный и гетерозиготный организмы. Неполное доминирование. Явление расщепления.
Гипотеза чистоты гамет. Анализирующее скрещивание. Сцепленное наследование генов - явление совместного наследования генов, локализованных в одной хромосоме, а локализация генов в одной хромосоме – сцеплением генов.
Генетика определения пола. Хромосомы, одинаковые у обоих полов, называются аутосомами. Половые хромосомы те, по которым мужской и женский полы отличаются друг от друга. Гомогаметный XX. Гетерогаметный ХУ. Наследование, сцепленное с полом.
Методы генетических исследований: гибридологический метод (метод скрещивания); цитогенетический метод; генеалогический метод; близнецовый метод.
Закономерности изменчивости. Изменчивость – процесс, отражающий взаимосвязь организма с внешней средой (генотипическая и модификационная). Наследственные изменения – мутации. Изменения, вызванные факторами внешней среды, не являются наследственными. Степень варьирования признака называется нормой реакции. Гомологические ряды Вавилова.
Развитие биологии в додарвиновский период. Истоки эволюционного учения - воззрения натурфилософов Древней Греции.
Основные знания об окружающем нас мире получены в период начиная с эпохи Возрождения до настоящего времени. Эпоха Возрождения – представление об абсолютной неизменяемости природы. Вершиной искусственной систематики явилась система К. Линнея в середине XVIII века. Ученый-метафизик XVIII в. Ж. Кювье – виды животных созданы Творцом и остаются неизменными.
Первая теория эволюционного развития органического мира создана в конце XVIII – начале XIX веков Ж.-Б. Ламарком. Эволюционное учение Ламарка строится на признании изменчивости организмов вследствие влияния внешней среды и наследования приобретенных признаков.
К. Рулье (русский ученый) – середина XIX века – считал, что по общему закону природы все организмы образуются путем медленных и постоянных изменений. Крупнейший русский эмбриолог YIX века К. Бэр обосновал закон зародышевого сходства. Во второй четверти XIX века М. Шлейден и Т. Шванн создали клеточную теорию – научное обоснование единства животного мира.
Основные идеи эволюционного учения Дарвина:
Учение о естественном отборе. Каждый вид организмов стремится к безграничному размножению, но огромная часть организмов гибнет, не оставив потомства. Причины гибели - конкуренция с представителями своего же вида за корм, нападение врагов, действие неблагоприятных абиотических факторов. Следует второй вывод: в природе происходит непрерывная борьба за существование. Дарвин выделил 3 формы борьбы за существование: а) внутривидовую; б) межвидовую; в) борьбу с неживой природой - неблагоприятными условиями. В природе происходят процессы избирательного уничтожения одних особей и преимущественного размножения других, это явление Ч. Дарвин назвал естественным отбором или выживанием наиболее приспособленных.
При изменении условий внешней среды меняется направление давления отбора и полезными для выживания оказываются какие-то иные признаки по сравнению с существующими. Движущей силой изменения видов, т.е. эволюции, является естественный отбор. Материалом для отбора служит наследственная изменчивость.
В основе эволюционной теории Ч. Дарвина лежит представление о виде. Видом называется совокупность особей, сходных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство
Одна из важнейших характеристик вида – его репродуктивная изоляция. Реально вид существует в виде популяций. Популяция является элементарной единицей эволюции.
Учение о микроэволюции составляет ядро современного дарвинизма.. Микроэволюция – процесс, идущий на уровне популяций. Образование нового вида – это итог микроэволюции.
В микроэволюционном процессе выделяются элементарные единицы, явления и процессы. Элементарная эволюционная единица – популяция, элементарный эволюционный материал – наследственная изменчивость, элементарные факторы эволюции: а) мутационный процесс; б) популяционные волны (волны сизни); в) изоляция; г) естественный отбор.
Мутационный процесс ведет к изменению частот отдельных аллелей (генов) в популяции и является поставщиком нового материала в популяцию. Поддерживая высокую степень генетического разнообразия популяций, он создает основу для действия естественного отбора. Многие мутации оказываются федными. Обезвреживание мутаций происходит в результате толового процесса. Безграничная изменчивость была бы вредна, но выработаны механизмы, не только увеличивающие изменчивость, но и понижающие ее.
Популяционные волны или колебание численности популяций. Действие волн жизни предполагает неизбирательное случайное уничтожение особей, благодаря чему редкий перед началом волны аллель может сделаться обычным и быть подхвачен естественным отбором. Влияние популяционных волн может быть особенно заметно в популяциях малой величины. Волны жизни – поставщики эволюционного материала.
Изоляция. Изоляция – возникновение любых барьеров, ограничивающих панмиксию. Изоляция закрепляет и усиливает начальные стадии генетической дифференцировки, без этого закрепления невозможно формообразование (видообразование). Важная характеристика – длительность изоляции. В природе существуют: пространственная и биологическая изоляции (биотопическая, этологическая, морфофизиологическая).
Естественный отбор – это единственный направленный эволюционный фактор, движущая сила эволюции. Предпосылки естественного отбора: гетерогенность особей, прогрессия размножения и давление жизни. Во всех случаях избыточная численность и экологическая предпосылка естественного отбора – борьба за существование. Объект отбора – особи или группы особей. В пределах популяции отбираются, то есть преимущественно оставляют потомство особи, обладающие какими-либо преимуществами перед другими, т.е. в процессе естественного отбора важно дифференциальное размножение особей. С позиций генетики под естественным отбором нужно понимать избирательное воспроизведение разных генотипов. Главное значение в эволюции имеет не само выживание особей, а их вклад в генофонд популяции.
Существует важное ограничение сферы действия отбора. Он не может изменить организацию вида без пользы для этого вида. Однако отбор часто ведет к созданию признаков и свойств, невыгодных для отдельной особи и полезных для популяции в целом (жало пчелы). Естественный отбор доказан экспериментально.
Основные формы естественного отбора в популяциях.
Стабилизирующий отбор. Это форма естественного отбора, направленного на поддержание в популяциях среднего, ранее сложившегося, значения, признака. Действует до тех пор, пока условия жизни существенно не меняются.
Движущий отбор. Движущей (или направленной) формой отбора принято называть отбор, способствующий сдвигу среднего значения признака или свойства. Такой отбор способствует закреплению новой нормы взамен старой, пришедшей в соответствие с изменяющимися условиями.
Дизруптивный отбор. Дизруптивный отбор направлен против особей со средним и промежуточным характером признаков и ведет к установлению полиморфизма в пределах популяций. Популяция как бы разрывается по данному признаку на несколько групп.
Другие, более частные формы отбора: половой, индивидуальный, групповой.
Результат действия естественного отбора – возникновение адаптации или приспособлений, например, таких как покровительственная окраска, мимикрия, предостерегающая окраска, различные средства защиты у растений и животных.
Целесообразность живой природы – результат исторического развития видов в определенных условиях. Поэтому она всегда относительна и имеет временный характер. Ни один из приспособительных признаков не обеспечивает абсолютной безопасности. Любые приспособления целесообразны только в обычной для вида обстановке. При изменении условий среды они оказываются бесполезными или даже вредными (резцы грызунов).
Преадаптации. В некоторых случаях у животных оказываются развитыми те органы или структуры, которые могут оказаться полезными для освоения новой среды обитания. Такие явления носят названия предадаптаций.
Видообразование – источник возникновения многообразия в живой природе. Видообразование – это разделение прежде единого вида на два или несколько. Основные пути и способы видообразования – аллопатрическое (географическое) и симпатрическое.
Макроэволюция. Под ней понимается эволюция организмов выше видового уровня. Гранью между микро- и макроэволюцией является этап формирования видов, видообразование. После образования вида единство и непрерывность эволюционного процесса не нарушается. На фоне непрерывно текущего микроэволюционного процесса при видообразовании происходят макроэволюционные значимые события. Одним из таких наиболее общих макроэволюционных событий может рассматриваться возникновение сложной системы форм родственных организмов, полностью биологически изолированных и образующих иерархическую систему таксонов:
вид - род – семейство - отряд - класс и т.д.
Макроэволюционные процессы. Филогенез – или эволюция крупных систематических групп (выше видового).
Первичные формы филогенеза:
1. Филетическая эволюция – процесс изменения исходного вида. В процессе филетической эволюции получается филетическое древо. В отличие от микроэволюционного процесса филетическая эволюция необратима.2. Дивергенция. Это другая первичная форма эволюции таксона (вида). В результате изменения направления отбора в разных условия происходит дивергенция (расхождение) ветвей древа жизни от единого ствола предков. Процессы дивергенции в макроэволюции необратимы.
Более частные макроэволюционные процессы – конвергенция и параллелизм. Конвергенция или возникновение различных признаков в систематически далеких, неродственных группах (крыло бабочки и летучей мыши). Параллелизм - формирование сходного фенотипического облика у первоначально разошедшихся (дивергировавших), но родственных групп.
Направления эволюции. Арогенез – переход эволюционирующей группы в новую адаптивную зону (крыло птицы, кистеперость рыб и т.д.). Аллогенез (идеоадаптации) - эволюция группы внутри одной адаптивной зоны.
Правила эволюции: необратимости эволюции - организм не может вернуться к прежнему состоянию; правило прогрессирующей специализации – эволюционирующая группа идет по пути все более глубокой специализации; правило происхождения от неспециализированных предков – новые крупные группы берут начало от сравнительно неспециализированных предков; правило адаптивной радиации - эволюция любой группы сопровождается разделением ее на ряд филогенетических стволов, которые расходятся в разных адаптивных направлениях от некого исходного среднего состояния.
Современные проблемы эволюционного учения. Нейтральная эволюция или постепенная эволюции за счет накопления молекулярных изменений (мутаций), дрейфа генов и других процессов.
Монофилия и полифилия различных таксономических групп. Сетчатая эволюция - происхождение таксонов гибридогенным путем и один из возможных механизмов полифилитического происхождения некоторых групп. Гипотеза симбиогенеза и полифилитическое происхождение типов и царств природы.
Проблемы эволюции экосистем. Устойчивость экосистем и преобладание в ненарушенных экосистемах стабилизирующего отбора. Сильная взаимосвязь видов в экосистемах порождает их одновременную или сопряженную эволюцию (коэволюцию) при глобальных изменениях на Земле.
5.1.1. Уровни организации живой материи
Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерархии живого. Выделяют следующие уровни организации живой материи:
1. Молекулярный (молекулярно-генетический). На этом уровне живая материя организуется в сложные высокомолекулярные органические соединения, такие, как белки, нуклеиновые кислоты и др.
2. Субклеточный (надмолекулярный). На этом уровне живая материя организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные структуры.
3. Клеточный. На этом уровне живая материя представлена клетками. Клетка является элементарной структурной и функциональной единицей живого.
4. Органно-тканевой. На этом уровне живая материя организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организма, выполняющая определенную функцию или функции.
5. Организменный (онтогенетический). На этом уровне живая материя представлена организмами. Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.
6. Популяционно-видовой. На этом уровне живая материя организуется в популяции. Популяция – совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида. Вид – совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).
7. Биоценотический. На этом уровне живая материя образует биоценозы. Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.
8. Биогеоценотический. На этом уровне живая материя формирует биогеоценозы. Биогеоценоз – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).
9. Биосферный. На этом уровне живая материя формирует биосферу. Биосфера – оболочка Земли, преобразованная деятельностью живых организмов.
Предсказать свойства каждого следующего уровня на основе свойств предыдущих уровней невозможно так же, как нельзя предсказать свойства воды, исходя из свойств кислорода и водорода. Такое явление носит название эмерджментность, то есть наличие у системы особых, качественно новых свойств, не присущих сумме свойств ее отдельных элементов. С другой стороны, знание особенностей отдельных составляющих системы значительно облегчает ее изучение.
5.1.2. Свойства живых систем
М. В. Волькенштейном предложено следующее определение жизни: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот».
Однако до сих пор общепризнанного определения понятия «жизнь» не существует. Но можно выделить признаки (свойства) живой материи, отличающие ее от неживой.
1. Определенный химический состав. Живые организмы состоят из тех же химических элементов, что и объекты неживой природы, однако соотношение этих элементов различно. Макроэлементами живых существ являются углерод С, кислород О, азот N и водород Н (в сумме около 98% состава живых организмов), а также кальций Са, калий К, магний Мg, фосфор Р, сера S, натрий Nа, хлор Сl, железо Fе (в сумме около 1–2%). Химические элементы, которые входят в состав живых организмов и при этом выполняют биологические функции, называются биогенными. Даже те из них, которые содержатся в клетках в ничтожно малых количествах (марганец Mn, кобальт Со, цинк Zn, медь Сu, бор В, иод I, фтор F и др.; их суммарное содержание в живом веществе составляет порядка 0,1 %), ничем не могут быть заменены и совершенно необходимы для жизни. Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке – вода (75–85 % от сырой массы живых организмов) и минеральные соли (1–1,5 %), важнейшие органические вещества – углеводы (0,2–2,0 %), липиды (1–5 %), белки (10–15 %) и нуклеиновые кислоты (1–2 %).
2. Клеточное строение. Все живые организмы, кроме вирусов, имеют клеточное строение.
3. Обмен веществ (метаболизм) и энергозависимость. Живые организмы являются открытыми системами, они зависят от поступления в них из внешней среды веществ и энергии. Живые существа способны использовать два вида энергии – световую и химическую, и поэтому признаку делятся на две группы: фототрофы (организмы, использующие для биосинтеза световую энергию – растения, цианобактерии) и хемотрофы (организмы, использующие для биосинтеза энергию химических реакций окисления неорганических соединений – нитрифицирующие бактерии, железобактерии, серобактерии и др.). В зависимости от источников углерода живые организмы делят на: автотрофы (организмы, способные создавать органические вещества из неорганических – растения, цианобактерии), гетеротрофы (организмы, использующие в качестве источника углерода органические соединения – животные, грибы и большинство бактерий) и миксотрофы (организмы, которые могут, как синтезировать органические вещества из неорганических, так и питаться готовыми органическими соединениями (насекомоядные растения, представители отдела эвгленовых водорослей и др.).
Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма – обмена веществ. Выделяют две составные части метаболизма – катаболизм и анаболизм.
Катаболизм (энергетический обмен, диссимиляция) – совокупность реакций, приводящих к образованию простых веществ из более сложных (гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и др. веществ). Катаболические реакции идут обычно с высвобождением энергии. Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме – аденозинтрифосфата (АТФ). Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Катаболизм делится на несколько этапов:
1) подготовительный этап (расщепление сложных углеводов до простых – глюкозы, жиров до жирных кислот и глицерина, белков до аминокислот);
2) бескислородный этап дыхания – гликолиз, в результате глюкоза расщепляется до ПВК (пировиноградной кислоты); в итоге образуется 2АТФ (из 1 моль глюкозы). У анаэробов или у аэробов при его недостатке кислорода протекает брожение.
3) кислородный этап – дыхание – полное окисление ПВК осуществляется в митохондриях эукариот в присутствии кислорода и включает две стадии: цепь последовательных реакций – цикл Кребса (цикл трикарбоновых кислот) и цикл переноса электронов; в итоге образуется 36АТФ (из 1 моль глюкозы).
Анаболизм (пластический обмен, ассимиляция) – понятие, противоположное катаболизму: совокупность реакций синтеза сложных веществ из более простых (образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза). Для протекания анаболических реакций требуются затраты энергии. Наиболее важным метаболическим процессом пластического обмена является фотосинтез (фотоавтотрофия) – синтез органических соединений из неорганических за счет энергии света.
Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.
4. Саморегуляция (гомеостаз). Живые организмы обладают способностью поддерживать гомеостаз – постоянство своего химического состава и интенсивность обменных процессов.
5. Раздражимость. Живые организмы проявляют раздражимость, то есть способность отвечать на определенные внешние воздействия специфическими реакциями. Реакция многоклеточных животных на раздражение осуществлявляется с участием нервной системы – рефлекс. Реакция на раздражение у простейших животных называется – таксис, выражающийся в изменении характера и направления движения. По отношению к раздражителю выделяют фототаксис – движение под воздействием источника света, хемотаксис – перемещение организма в зависимости от концентрации химических веществ и др. Выделяют положительный или отрицательный таксис в зависимости от того, действует раздражитель на организм позитивно или негативно. Реакция на раздражение у растений – тропиз, выражающийся в определенный характер роста. Так, гелиотропизм (от греч. «Гелиос» – Солнце) означает рост наземных частей растений (стебля, листьев) по направлению к Солнцу, а геотропизм (от греч. «Гея» – Земля) – рост подземных частей (корней) по направлению к центру Земли.
6. Наследственность. Живые организмы способны передавать неизменными признаки и свойства из поколения в поколение с помощью носителей информации – молекул ДНК и РНК.
7. Изменчивость. Живые организмы способны приобретать новые признаки и свойства. Изменчивость создает разнообразный исходный материал для естественного отбора, т.е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях, что в свою очередь приводит к появлению новых форм жизни, новых видов организмов.
8. Самовоспроизведение (размножение). Живые организмы способны размножаться – воспроизводить себе подобных. Благодаря размножению осуществляются смена и преемственность поколений. Принято различать два основных типа размножения:
- Бесполое размножение (участвует одна особь) наиболее широко распространено среди прокариот, грибов и растений, но встречаются и у различных видов животных. Основные формы бесполого размножения: деление, спорообразование, почкование, фрагментация, вегетативное размножение и клонирование (клон – генетическая копия одной особи).
- Половое размножение (обычно осуществляется двумя особями) характерно для подавляющего большинства живых организмов и имеет огромное биол. значение. Вся совокупность явлений, связанных с половым размножением, складывается из 4 основных процессов: образование половых клеток – гамет (гаметогенез); оплодотворение (сингамия – слияние гамет и их ядер) и образование зиготы; эмбиогенез (дробление зиготы и формирование зародыша); дальнейший рост и развитие организма в послезародышевый (постэмбриональный) период. Биологическое значение полового размножения заключается не только в самовоспроизведении особей, но и в обеспечении биологического разнообразия видов, их адаптивных возможностей и эволюционных перспектив. Это позволяет считать половое размножение биологически, более прогрессивным, чем бесполое. Половое размножение осуществляется с помощью специализированных половых клеток – гамет, имеющих вдвое меньшим числом хромосом, чем соматические клетки. Женские гаметы называют яйцеклетками, мужские – сперматозоидами. Для некоторых групп организмов характерны так называемые нерегулярные типы полового размножения: партеногенез (развитие зародыша из неоплодотворенной яйцеклетки – пчелы, муравьи, термиты, тля, дафнии), апомиксис (развитие зародыша из клеток зародышевого мешка или неоплодотворенной яйцеклетки у цветковых растений) и др.
9. Индивидуальное развитие (онтогенез). Каждой особи свойственен онтогенез – индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). Развитие сопровождается ростом.
10. Эволюционное развитие (филогенез). Живой материи в целом свойственен филогенез – историческое развитие жизни на Земле с момента ее появления до настоящего времени.
11. Адаптации. Живые организмы способны адаптироваться, то есть приспосабливаться к условиям окружающей среды.
12. Ритмичность. Живые организмы проявляют ритмичность жизнедеятельности (суточную, сезонную и др.).
13. Целостность и дискретность. С одной стороны, вся живая материя целостна, определенным образом организована и подчиняется общим законам; с другой стороны, любая биологическая система состоит из обособленных, хотя и взаимосвязанных элементов. Любой организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т.е. обособленных или отграниченных в пространстве, но, тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство.
14. Иерархичность. Начиная от биополимеров (белков и нуклеиновых кислот) и заканчивая биосферой в целом, все живое находится в определенной соподчиненности. Функционирование биологических систем на менее сложном уровне делает возможным существование более сложного уровня.
15. Негэнтропия. Согласно II закону термодинамики все процессы, самопроизвольно протекающие в изолированных системах, развиваются в направлении понижения упорядоченности, т.е. возрастания энтропии. В то же время по мере роста и развития живые организмы, наоборот, усложняются, что, казалось бы, противоречит второму началу. На самом деле это мнимое противоречие. Дело в том, что живые организмы представляют собой открытые системы. Организмы питаются, поглощая при этом энергию извне, выделяют в окружающую среду тепло и продукты жизнедеятельности, наконец, погибают и разлагаются. По образному выражению Э. Шредингера, «организм питается отрицательной энтропией». Совершенствуясь и усложняясь, организмы вносят хаос в окружающий их мир.
Кроме перечисленных, иногда выделяют физиологические свойства, присущие живому – рост, развитие, выделение и т.д.
5.1.3. Химический состав, строение и воспроизведение клеток
Из 112 химических элементов Периодической системы Д.И. Менделеева в состав организмов входит более половины. Химические элементы входят в состав клеток в виде ионов или компонентов молекул неорганических и органических веществ. Относительно простые химические соединения, которые встречаются как в живой, так и в неживой природе (в минералах, природных водах), называют неорганическими (или минеральными) веществами. Многообразные соединения углерода, синтезируемые преимущественно живыми организмами, называют органическими веществами: углеводы, белки, липиды, нуклеиновые кислоты и др.
Вода – преобладающий компонент всех живых организмов; среднее содержание в клетках большинства организмов составляет около 70%. Воды выполняет следующие функции: универсальный растворитель, среда для протекания биохимических реакций, терморегулятор (поддерживает тепловое равновесие клеток благодаря высокой теплоемкости и теплопроводности), осуществляет транспорт веществ, определяет осмотическое давление, вода – источник кислорода, выделяющегося при фотосинтезе.
Минеральные вещества – составляют до 1,5% сырой массы клетки. Наиболее важны H+, K+, Ca2+, Mg2+, HPO42–, H2PO4–, Cl, HCO3–. Функции неорганических веществ: образуют межмембранный потенциал, поддерживают рН в клетке (буферные системы HPO42–, H2PO4– и CO32–, HCO3–), создают осмотический потенциал, образуют скелет позвоночных, раковины моллюсков, активируют ферменты.
Углеводы (сахариды) – Cn(H2O)m, в клетке от 0,2 до 2% в расчете на сухую массу. Моносахариды: глюкоза, фруктоза, рибоза, дезоксирибоза. Дисахариды: мальтоза, лактоза, сахароза. Полисахариды: гликоген, крахмал, целлюлоза, хитин. Биологическое значение: энергетическая, структурная, запасающая, защитная функции.
Липиды – нерастворимые в воде органические вещества (гидрофобны), содержание в клетках от 1 до 15%, в жировых до 90%. К липидам относятся: жиры (сложные эфиры глицерина и высокомолекулярных жирных кислот), воска, стеролы. Биологическое значение: энергетическая, запасающая, структурная, защитная, регуляторная, функции.
Белки (полипептиды) – полимеры, состоящие из 20 аминокислот. Растения способны самостоятельно синтезировать все аминокислоты, а животные лишь часть из них, поэтому остальные, называемые незаменимыми, они должны получать с пищей. Биол. значение: каталитическая, структурная, регуляторная, защитная, транспортная, энергетическая функции. В строении белков выделяют несколько структур: первичная структура (определяется последовательностью аминокислот), вторичная структура (вид спирали, возникает за счет водородных связей), третичная структура (вид глобула, образована за счет дисульфидных, ионных и гидрофобных связей), четвертичная структура (объединение нескольких третичных структур, удерживающихся ионными, водородными и гидрофобными связями – гемоглобин). Изменение свойств, конформации и биологической активности белка называют денатурацией.
Нуклеиновые кислоты – моно– или полинуклеотиды, выполняющие в клетке очень важные функции. Мононуклеотиды выступают в качестве источника энергии – АТФ, полинуклеотиды обеспечивают хранение и передачу наследственной информации – ДНК и РНК. Мононуклеотид состоит из азотистого основания (пурунового: аденин – А, гуанин – Г или пиримидинового: цитозин – Ц, тимин – Т, урацил – У), пятиуглеродного сахара (рибозы или дезоксирибозы) и остатков фосфорной кислоты. Строение молекулы ДНК расшифровали Дж. Уотсон и Ф. Крик.
В нуклеотиде ДНК содержится одно из четырех азотистых оснований – аденин А, гуанин Г, тимин Т или цитозин Ц, сахар – дезоксирибоза и остаток фосфорной кислоты. В нуклеотиде РНК содержится одно из четырех азотистых оснований – А, Г, У (вместо Т) или Ц, сахар – рибоза и остаток фосфорной кислоты. ДНК большинства живых организмов (кроме вирусов) состоят из двух антипараллельно направленных полинуклеотидных цепей, связанных водородными связями между азотистыми основаниями по принципу комплементарности: А=Т, Г≡Ц.
РНК – разнообразные по размерам, структуре и функциям одноцепочечные молекулы. Все молекулы РНК являются копиями определенных участков ДНК. Выделяют три вида РНК: мРНК (иРНК) – матрица для синтеза молекул белка; рРНК – составляет 50% субъединиц рибосом (50% белок); тРНК – присоединяют определенную аминокислоты к антикодону и транспортируют ее к месту сборки полипептида.
Одним из крупнейших обобщений XIX в. стала клеточная теория, изложенная в трудах Т. Шванна, М. Шлейдена и Р. Вирхова. Современная клеточная теория включает следующие положения:
- все живые организмы состоят из клеток (исключение составляют вирусы); клетки одноклеточных и многоклеточных животных и растительных организмов сходны (гомологичны) по строению, химическому составу, принципам обмена веществ и основным проявлениям жизнедеятельности.
- все живые организмы развиваются из одной или группы клеток; каждая новая клетка образуется в результате деления сходной (материнской) клетки.
- в сложных многоклеточных организмах клетки дифференцируются, специализируясь по выполнению определенной функции; клетки объединены в ткани и органы, функционально вязанные в системы, и находятся под контролем межклеточных, гуморальных и нервных форм регуляции.
Среди всего многообразия ныне существующих на Земле организмов выделяют вирусы, не имеющие клеточного строения, все остальные организмы представлены разнообразными клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический.
Клетки прокариотических организмов устроены сравнительно просто. В них нет морфологически обособленного ядра, единственная хромосома образована кольцевидной ДНК и находится в цитоплазме, мембранные органеллы отсутствуют (их функцию выполняют различные впячивания плазматической мембраны). К надцарству прокариот относят бактерий. Одну из групп фотосинтезирующих бактерий (синезеленые водоросли, или цианобактерии) раньше относили к водорослям. Однако в настоящее время их рассматривают как специфическую группу бактерий.
Большинство современных живых организмов относится к одному из трех царств – растений, грибов и животных, объединяемых в надцарство эукариот.
Для растительных клеток характерно наличие толстой целлюлозной клеточной стенки, различных пластид, крупной центральной вакуоли, смещающей ядро к периферии. Клеточный центр высших растений без центриоли. В качестве резервного питательного углевода клетки растений запасают крахмал.
В клетках грибов клеточная оболочка содержит хитин, в цитоплазме имеется центральная вакуоль, отсутствуют пластиды. Главным резервным полисахаридом является гликоген.
Животные клетки имеют, как правило, тонкую клеточную стенку, не содержат пластид и центральной вакуоли, для клеточного центра характерна вакуоль. Запасным углеводом является гликоген.
В зависимости от количества клеток, из которых состоят организмы, последние делят на одноклеточные и многоклеточные. Одноклеточными являются все прокариоты, а также простейшие, некоторые зеленые водоросли и грибы. Несмотря на индивидуальные особенности, все клетки построены по единому плану и имеют много общих черт.
Эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.
Снаружи клетка окружена оболочкой, основу которой составляет плазматическая мембрана или плазмолемма. Мембраны состоят из белков и липидов (бимолекулярный слой). Мембраны, обладают свойством избирательной проницаемости (способны пропускать одни веществ и не пропускать другие), а также свойством самопроизвольного восстановления целостности структуры. Углеводный компонент в составе клеточных оболочек разных клеток выражен в различной степени: в животных клетках он относительно тонок и называется гликокаликсом, в растительных клетках углеводный компонент сильно выражен и представлен целлюлозной клеточной стенкой.
Внутреннее содержимое клетки представлено цитоплазмой, состоящей из основного вещества, или гиалоплазмы (т.е. водный раствор неорганических и органических веществ), и находящихся в нем разнообразных внутриклеточных структур. Последние представлены: включениями – относительно непостоянные компоненты, например запасные питательные вещества (зерна крахмала, белков, капли гликогена) или продукты, подлежащие выведению из клетки (гранулы секрета); органоидами – постоянные и обязательные компоненты большинства клеток, имеющие специфическую структуру и выполняющие жизненно важные функции.
К органоидам клетки не имеющим мембранного строения относят рибосомы, микрофиламенты. микротрубочки, клеточный центр.
Рибосомы – структуры, состоящие из примерно равных по массе количеств рРНК и белка, представлены субъединицами: большой и малой. Функция рибосом – сборка белковых молекул.
Микротрубочки и микрофиламенты – нитевидные структуры, состоящие из различных сократительных белков, обуславливающие двигательные функции клетки.
Клеточный центр (центросома) состоит из двух центриолей, участвующих в формировании митотического веретена клетки. Каждая центриоль имеет вид полого цилиндра, стенка которого образована 9 триплетами микротрубочек.
К мембранным органоидам эукариотической клетки относят структуры с одинарной мембраной – ЭПС, комплекс Гольджи, лизосомы, а также органоиды с двумя мембранами – митохондрии и пластиды. По симбиотической гипотезе о происхождении эукариотической клетки, митохондрии и пластиды являются потомками древних прокариот. Эти органеллы полуавтономны, т.к. обладают собственным аппаратом биосинтеза белка (ДНК, РНК, ферменты).
ЭПС (эндоплазматическая сеть) – разветвленная система полостей, трубочек и каналов. ЭПС – место синтеза белков и липидов, а также их транспорта внутри клетки. На мембране шероховатой ЭПС располагаются рибосомы (синтез белков). Мембраны гладкой ЭПС содержат ферменты синтеза почти всех липидов.
Аппарат Гольджи состоит из дисковидных мембранных полостей и отшнуровывающихся от них микропузырьков. Попадающие в АГ белки и липиды сортируются, упаковываются в секреторные пузырьки и транспортируются к различным внутриклеточным структурам или за пределы клетки. Мембраны аппарата Гольджи способны образовывать лизосомы.
Лизосомы выполняют функцию внутриклеточного переваривания макромолекул пищи и чужеродных компонентов, поступающих в клетку. Для осуществления этих функций лизосомы содержат около 40 ферментов, разрушающих белки, нуклеиновые кислоты, липиды, углеводы.
Митохондрии важнейшие органоиды клетки, осуществляющие аэробное дыхание, в котором образуется основная часть молекул АТФ. Митохондрии называют энергетическими станциями клетки. Внутренняя мембрана образует многочисленные выросты кристы, пространство между ними заполнено матриксом, содержащим различные ферменты, нуклеиновые кислоты, рибосомы.
Пластиды присутствуют только в растительных клетках. Известны три типа пластид: хлоропласты, хромопласты и лейкопласты. Бесцветные лейкопласты выполняют запасающую функцию в корнях, семенах, клубнях, листьях. Желто-оранжевые хромопласты определяют окраску плодов, цветков, листьев. Зеленые хлоропласты на внутренней мембране имеют выросты – ламеллы, на которых расположены уплощенные пузырьки – тилакоиды, сложенные в стопки – граны. В мембранах гран находится хлорофилл, обеспечивающий протекание световой фазы фотосинтеза.
Специализированными органоидов общего значения являются сократительные вакуоли, синаптические пузырьки нервных клеток, микроворсинки эпителиальных клеток, реснички и жгутики.
Клеточное ядро – наиболее важный компонент эукариотических клеток (нет в проводящих клетках флоэмы и эритроцитах). Большинство клеток имеют одно ядро, но встречаются и многоядерные клетки. В состав ядра входят ядерная оболочка и кариоплазма, содержащая хромосомы. Хромосомы – молекулами ДНК в комплексе с белками. Число хромосом в клетках каждого биологического вида постоянно. Обычно в ядрах клеток тела (соматических) хромосомы представлены парами, в половых клетках они непарны. Одинарный набор хромосом в половых клетках называют гаплоидным (n), набор хромосом в соматических клетках – диплоидным (2n).
Диплоидный набор хромосом конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называется кариотипом.
Кариотип человека представлен 46 хромосомами (23 пары): 44 аутосомы и 2 половые хромосомы (у женщины две одинаковые X-хромосомы, у мужчины – Х и Y-хромосомы).
Пол, который образуют гаметы одинаковые по половой хромосоме, называют гомогаметным, а пол образующий разные гаметы – гетерогаметным.
У млекопитающий (в т.ч. человека), червей, большинства членистоногих, земноводных, некоторых рыб гомогаметным является женский пол, а гетерогаметным – мужской.
Одним из положений клеточной теории является постулат «omnis cellula e cellula» – каждая клетка из клетки. Деление клеток – жизненно важный процесс для всех организмов. В человеческом организме, состоящем примерно из 1013 клеток, каждую секунду должны делиться несколько миллионов из них. Существует несколько типов деления клеток.
Митоз – универсальный способ деления эукариотических клеток, состоящий из четырех фаз: профазы, метафазы, анафазы и телофазы. При митозе образуются клетки с наследственной информацией, которая качественно и количественно идентична информации материнской клетки
Амитоз – прямое деление ядра две более или менее равные части, но дочерние клетки получают наборы неидентичные материнскому. Таким способом делятся стареющие и патологически измененные клетки, а также клетки эндосперма и кожного эпителия.
Мейоз (от греч. «мейозис» - уменьшение) – своеобразный способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз является центральным звеном гаметогенеза у животных и спорогенеза у растений. Мейоз состоит из двух последовательных делений, которым предшествует однократная редупликация ДНК. После двух последовательных мейотических делений из одной клетки с диплоидным набором двухроматидных хромосом (1n4с) образуются четыре клетки с гаплоидным набором однохроматидных хромосом (nс). Мейоз – основа комбинативной изменчивости, обеспечивая генетическое разнообразие гамет благодаря процессам кроссинговера (обмена участками между гомологичными хромосомами в профазе I мейотического деления), расхождения и комбинаторики отцовских и материнских хромосом.
5.1.4. Биосфера и ее структура
Термин «биосфера» использовал в 1875 г. австрийский геолог Э. Зюсс для обозначения оболочки Земли, населяемой живыми организмами.
В 20-х гг. прошлого века в трудах В.И. Вернадского было разработано представление о биосфере как глобальной единой системе Земли, где весь основной ход геохимических и энергетических превращений определяется жизнью. В.И. Вернадский впервые создал учение о геохимической роли живых организмов, показав, что их деятельность является главным фактором преобразования земной коры.
По В.И. Вернадскому: биосфера – та область нашей планеты, в которой существует или когда-либо существовала жизнь и которая постоянно подвергается или подвергалась воздействию живых организмов.
Участие каждого отдельного организма в геологической истории Земли ничтожно мало. Однако живых существ на Земле бесконечно много, они обладают высоким потенциалом размножения, активно взаимодействуют со средой обитания и, в конечном счете, представляют в своей совокупности особый, глобальных масштабов фактор, преобразующий верхние оболочки Земли. Биосферу рассматривают как наиболее крупную экосистему планеты, поддерживающую глобальный круговорот веществ.
Современная жизнь распространена в верхней части земной коры (литосфере), в нижних слоях воздушной оболочки Земли (атмосфере) и в водной оболочке Земли (гидросфере). На поверхности Земли в настоящее время полностью лишены живых существ лишь области обширных оледенений и кратеры действующих вулканов. В. И. Вернадский указывал на «всюдность» жизни в биосфере. Об этом свидетельствует история нашей планеты. Жизнь появилась локально в водоемах и затем распространялась все шире и шире, заняв все материки. Постепенно она захватила всю биосферу, и захват этот, по мнению В. И. Вернадского, еще не закончился.
В глубь Земли живые организмы проникают на небольшое расстояние. В литосфере жизнь ограничивает, прежде всего, температура горных пород и подземных вод, которая постепенно возрастает с глубиной и на уровне 1,5–15 км уже превышает 100˚С. В нефтяных месторождениях на глубине 2–2,5 км бактерии регистрируются в значительном количестве (живые организмы обнаружены до глубины 7,5 км). В океане жизнь распространена на всех глубинах и встречается на дне океанических впадин в 10–11 км и температурой около 0˚С. Верхняя граница жизни в атмосфере определяется нарастанием ультрафиолетовой радиации. На высоте 25–27 км большую часть ультрафиолетового излучения Солнца поглощает находящийся здесь озон. Все живое, поднимающееся выше защитного слоя озона, погибает. Основная часть жизни в атмосфере сосредоточена в слое до 1–1,5 км. В горах граница распространения наземной жизни около 6 км над уровнем моря.
В.И. Вернадский рассматривал биосферу как область жизни, включающую наряду с организмами и среду их обитания. Он выделил в биосфере семь разных, но геологически взаимосвязанных типов веществ. По В.И. Вернадскому, в состав биосферы входят следующие типы веществ.
1. Живое вещество – живые организмы, населяющие нашу планету (масса живого вещества составляет лишь 0,01% от массы всей биосферы).
2. Косное вещество – неживые тела, образующиеся в результате процессов, не связанных с деятельностью живых организмов (породы магматического и метаморфического происхождения, некоторые осадочные породы).
3. Биогенное вещество – неживые тела, образующиеся в результате деятельности живых организмов (некоторые осадочные породы: известняки, мел и др., а также нефть, газ, каменный уголь, кислород атмосферы и др.).
4. Биокосное вещество – биокосные тела, представляющие собой результат совместной деятельности живых организмов и геологических процессов (почвы, илы, кора выветривания и др.).
5. Радиоактивное вещество – атомы радиоактивных элементов – уран (238U и 235U), торий (232Th), радий (226Ra) и радон (222Rn и 220Rn), калий (40K), рубидий (87Rb), кальций (48Са), углерод (14С) и др.
6. Рассеянные атомы – отдельные атомы элементов, встречающиеся в природе в рассеянном состоянии (в таком состоянии часто существуют атомы микро- и ультрамикроэлементов: Mn, Со, Zn, Сu, Аu, Hg и др.)
7. Вещество космического происхождения – вещество, поступающее на поверхность Земли из космоса (метеориты, космическая пыль).
5.1.5. Функции живого вещества биосферы
Живое вещество обеспечивает биогеохимический круговорот веществ и превращение энергии в биосфере. Выделяют следующие основные геохимические функции живого вещества:
1. Энергетическая (биохимическая) – связывание и запасание солнечной энергии в органическом веществе и последующее рассеяние энергии при потреблении и минерализации органического вещества. Эта функция связана с питанием, дыханием, размножением и другими процессами жизнедеятельности организмов.
2. Газовая – способность живых организмов изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. С газовой функцией связывают два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). С этого времени восстановительные процессы в биосфере стали дополняться окислительными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период связывают со временем, когда концентрация кислорода достигла примерно 10% от современной (вторая точка Пастера). Это создало условия для синтеза озона и образования озонового слоя в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого функцию защиты организмов от губительных космических излучений выполняла вода).
3. Концентрационная – «захват» из окружающей среды живыми организмами и накопление в них атомов биогенных химических элементов. Концентрационная способность живого вещества повышает содержание атомов химических элементов в организмах по сравнению с окружающей средой на несколько порядков. Содержание углерода в растениях в 200 раз, а азота в 30 раз превышает их уровень в земной коре. Содержание марганца в некоторых бактериях может быть в миллионы раз больше, чем в окружающей среде. Результат концентрационной деятельности живого вещества – образование залежей горючих ископаемых, известняков, рудных месторождений и т.п.
4. Окислительно-восстановительная – окисление и восстановление различных веществ с участием живых организмов. Под влиянием живых организмов происходит интенсивная миграция атомов элементов с переменной валентностью (Fe, Mn, S, Р, N и др.), создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование сероводорода и т.п.
5. Деструктивная – разрушение организмами и продуктами их жизнедеятельности, в том числе и после их смерти, как остатков органического вещества, так и косных веществ. Наиболее существенную роль в этом отношении выполняют редуценты (деструкторы) – сапротрофные грибы и бактерии.
6. Транспортная – перенос вещества и энергии в результате активной формы движения организмов. Такой перенос может осуществляться на огромные расстояния, например, при миграциях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например, в местах их скопления (птичьи базары и другие колониальные поселения).
7. Средообразующая – преобразование физико-химических параметров среды. Эта функция является в значительной мере интегральной – представляет собой результат совместного действия других функций. Она имеет разные масштабы проявления. Результатом средообразующей функции является и вся биосфера, и почва как одна из сред обитания, и более локальные структуры.
8. Рассеивающая – функция, противоположная концентрационной – рассеивание веществ в окружающей среде. Она проявляется через трофическую и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, смене покровов и т.п. Железо гемоглобина крови рассеивается кровососущими насекомыми.
9. Информационная – накопление живыми организмами определенной информации, закрепление ее в наследственных структурах и передача последующим поколениям. Это одно из проявлений адаптационных механизмов.
10. Биогеохимическая деятельность человека – превращение и перемещение веществ биосферы в результате человеческой деятельности для хозяйственных и бытовых нужд человека. Например, использование концентраторов углерода – нефти, угля, газа и др.
Таким образом, биосфера представляет собой сложную динамическую систему, осуществляющую улавливание, накопление и перенос энергии путем обмена веществ между живым веществом и окружающей средой.
5.1.6. Круговорот веществ в биосфере
Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии.
В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты.
Геологический круговорот (большой круговорот веществ в природе) – круговорот веществ, движущей силой которого являются геологические процессы. Протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли. Крупнейшие формы рельефа (материки и океанические впадины) и крупные формы (горы и равнины) образовались за счет эндогенных процессов, а средние и мелкие формы рельефа (речные долины, холмы, овраги, барханы и др.), наложенные на более крупные формы, – за счет экзогенных процессов.
Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) – круговорот веществ, движущей силой которого является деятельность живых организмов и совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ, затем они потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ. В зависимости от расположения резервного фонда (т.е. веществ не связанных с живыми организмами) биогеохимические круговороты можно разделить на два типа:
1) Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).
2) Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).
Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды.
С появлением человека возник антропогенный круговорот, или обмен, веществ. Антропогенный круговорот (обмен) – круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей (техногенный круговорот).
Геологический и биологический круговороты в значительной степени замкнуты, чего нельзя сказать об антропогенном круговороте. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ.
5.2. Принципы эволюции, воспроизводства и развития
живых систем
Биологическая эволюцией – это историческое развитие организмов, в основе которого лежат уникальные процессы функционирования генетической информации в конкретных условиях окружающей среды.
Основу принципов эволюции, воспроизводства и развития живых систем составляют, предложенные Ч. Дарвином, движущие силы эволюции: наследственная изменчивость, борьба за существование, естественный отбор.
5.2.1. Основные эволюционные учения
На протяжении многих веков господствовали представления о Божественном происхождении природы, о том, что виды организмов были созданы в их нынешних формах, после чего они же не изменялись. Представление о сотворении живых организмов Богом получило название креационизма. Видов животных и растений столько, сколько создано Богом; организмы построены в соответствии с изначальной целесообразностью, т.е. в зависимости от цели, которую поставил творец.
К концу XVIII в. было описано много животных и растений, проводились попытки их систематизации. Значительный вклад в создание системы природы внес выдающийся шведский ученый К. Линней. Он ввел принцип двойного наименования для обозначения положения определенного вида в системе, например Человек разумный.
История эволюционных учений характеризуется сменой различных представлений о факторах, способствовавших целесообразной адаптации организмов к среде.
Эволюционное учение Ламарка. Первая попытка разработки целостной теории эволюционного развития живого принадлежит Ж.-Б. Ламарку (начало XIX в.). В системе природы Ламарк разместил организмы в восходящем порядке – от простейших до высокоорганизованных существ. По его мнению, эволюция идет на основании внутреннего стремления организмов к прогрессу. Причиной многообразия живого Ламарк считал воздействие различных факторов среды, причем реакции организма на воздействия среды носят целесообразный характер и передаются по наследству. Например, при скудном растительном покрове почвы жираф вынужден ощипывать листья с деревьев, постоянно вытягивая шею, чтобы достать их. У животных, ведущих подземный образ жизни, орган зрения не использовался и в связи с неупражнением постепенно атрофировался (крот). Таким образом, Ж.-Б.Ламарк считал, что новые признаки всегда полезны и наследуются. Это представление об изначальной целесообразности любой реакции на измененные условия, так же как и мнение о прямом воздействии окружающей среды на эволюционные процессы и внутреннем стремлении организмов к прогрессу, оказались ошибочными.
Теория эволюции Дарвина. В 1858 г. Ч.Дарвин и независимо от него А.Р. Уоллес обосновали принцип естественного отбора и представление о борьбе за существование как механизме этого отбора. Теория эволюции путем естественного отбора основана на следующих положениях:
1. Для живого характерно наличие изменчивости, причем для эволюции громадное значение имеет наследственная изменчивость. При благоприятных условиях эти различия могут не играть существенной роли, при неблагоприятных – каждое мельчайшее различие может стать решающим в том, останется ли этот организм в живых и даст потомство или же он будет уничтожен.
2. Для организмов характерно размножение в геометрической прогрессии. Потенциально вид в каждом поколении производит гораздо больше особей, чем их может выжить до взрослого состояния на занимаемой территории. Следовательно, значительная часть родившихся гибнет в «борьбе за жизнь». В результате борьбы за существование происходит элиминация (физическая гибель или устранение при размножении) особей, которые по признакам наименее соответствуют условиям среды обитания. Таким образом, следствием борьбы за существование является естественный отбор.
Естественный отбор, по Дарвину, – это выживание наиболее приспособленных, и преимущественное оставление ими потомства. Естественный отбор не отбирает более приспособленных, они просто сохраняются в результате элиминации менее приспособленных.
Ч.Дарвин считал, что возникновение новых видов происходит постепенно путем накопления полезных индивидуальных изменений, увеличивающихся из поколения в поколение. Процесс видообразования происходит по принципу дивергенции, т.е. за счет расхождения признаков.
Таким, образом, результатом отбора является возникновение приспособлений и на этой основе – видового разнообразия.
Дарвин впервые предложил естественно-научное объяснение эволюционного процесса. Он указал на движущие силы эволюции: наследственная изменчивость, борьба за существование, естественный отбор; дал объяснение механизма видообразования.
Синтетическая теория эволюции (СТЭ) возникла в конце XIX в. и представляет собой единение нескольких наук, первостепенными из них являются теория эволюции и генетика. Основные положения СТЭ по Н.Н. Воронцову следующие:
1. Материалом для эволюции служат, как правило, очень мелкие, но дискретные изменения наследственности – мутации.
2. Основным или даже единственным движущим фактором эволюции является естественный отбор, основанный на отборе (селекции) случайных и мелких мутаций.
3. Наименьшая эволюционирующая единица эволюции – популяция.
4. Эволюция носит дивергентный характер, т.е. один таксон может стать предком нескольких дочерних таксонов, но каждый вид имеет единственный предковый тип.
5. Эволюция носит постепенный и длительный характер.
6. Вид состоит из множества соподчиненных, морфологически, физиологически и генетически отличных, но репродуктивно не изолированных единиц – подвидов, популяций.
7. Обмен аллелями возможен лишь внутри вида. Вид – генетически целостная и замкнутая система.
8. Любой реальный, а не сборный таксон имеет однокорневое, монофилитическое происхождение.
5.2.3. Микро- и макроэволюция. Факторы эволюции
Эволюционный процесс разделяют на два этапа:
- микроэволюцию – возникновение новых видов;
- макроэволюцию – эволюционные преобразования на надвидовом уровне.
Теория микроэволюции изучает необратимые преобразования генетико-экологической структуры популяции (вида), приводящие к формированию нового вида. При этом популяция есть элементарная единица эволюции.
Теория макроэволюции рассматривает вопросы происхождения и развития надвидовых таксонов (классов, семейств, отрядов и т.д.), обосновывает закономерности развития жизни на Земле.
Процесс макроэволюции длится десятки и сотни миллионов лет, а микроэволюции тысячи тел.
Результатом эволюции является образование из популяций новых видов. Выделяют два основных пути видообразования: 1) аллопатрическое или географическое видообразование, связанное с пространственной изоляцией дивергировавших групп и может осуществляться в основном путем миграции или расчленения ареала различными преградами (реки, горы, почвы, климат и др.); 2) симпатрическое видообразование осуществляется в пределах ареала исходного вида несколькими способами – путем попиплоидии, гибридизации, сезонной изоляции.
Вид – совокупность особей, характеризующихся общим происхождением, наследственным сходством морфологических, физиологических и биохимических особенностей, способных скрещиваться и давать плодовитое потомство, приспособленных к определенным условиям среды и занимающих определенный ареал. Критерии вида: морфологический, физиологический, биохимический, генетический, экологический, географический.
Популяция – совокупность свободно скрещивающихся особей одного вида, населяющих определенный ареал и частично изолированных от других популяций. Популяцию считают простейшей эволюционной единицей. Главный фактор, определяющий единство популяции и ее относительную обособленность, – свободное скрещивание особей. Внутри популяции каждый организм одного пола имеет равную вероятность на образование брачной пары с любым организмом другого пола.
Качественное отличие вида от других единиц более высоких такономических рангов – родов, семейств, отрядов – в том, что он представляет наименьшую, генетически неделимую закрытую систему (популяции, составляющие вид, тоже генетически закрытые системы, но не постоянные, а временные, поскольку пока популяция входит в какой-либо вид, она потенциально способна обмениваться генетической информацией с другими популяциями).
Изменения генотипического состава популяций происходят под действием множества событий, которые тем или иным путем в состоянии преобразовывать популяции. Тем не менее возможно выделить четыре основных элементарных фактора эволюции: мутационный процесс, популяционные волны, изоляция и естественный отбор.
Мутационный процесс постоянно увеличивает генетическую гетерогенность популяций, создает резерв изменчивости и дает более широкие возможности для совершенствования приспособлений при изменении среды. Элементарными наследственными изменениями являются различные формы мутаций, которые определяют изменения признаков, свойств и норм реакции у организмов. В сумме они составляют ту «неопределенную», «индивидуальную» изменчивость, которую Ч. Дарвин положил в основу процесса эволюции. Как показал, С.С. Четвериков, популяции насыщены мутациями и обладают широкими возможностями для совершенствования существующих и выработки новых приспособлений при изменении среды. Рецессивные мутации в гетерозиготном состоянии составляют скрытый резерв изменчивости, который может быть использован естественным отбором при изменении условий существования. Но сам мутационный процесс без участия других факторов эволюции не может направлять изменения эволюционного материала, резерва наследственной изменчивости.
Популяционные волны или «волны жизни» – периодические и непериодические колебания численности особей в популяциях. Причинами этих колебаний могут быть различные абиотические и биотические факторы. При резком сокращении численности (например, вследствие сезонных колебаний, сокращения кормовых ресурсов и т.д.) среди оставшихся в живых немногочисленных особей могут быть редкие генотипы. Если в дальнейшем численность восстановится за счет этих особей, то это приведет к случайному изменению частот генов в генофонде данной популяции. Таким образом, популяционные волны являются поставщиком эволюционного материала. Примерами популяционных волн могут служить колебания численности грызунов, цианобактерий, насекомых, бактерий и т.п. Случайное изменение частот генов в генофонде популяции называют дрейфом генов.
Изоляция – важнейший фактор эволюции, приводящий к разобщению, делающим невозможным свободное скрещивание. Размножение идет преимущественно в пределах изолята, прекращается обмен генетической информацией с другими группами. Это способствует закреплению начальной стадии изменения генофонда обособившейся группы, становлению ее как самостоятельной генетической системы. Различают пространственную и биологическую изоляцию.
Пространственная изоляция связана с территориально-географическими (водные преграды, горные хребты, места, непригодные для жизни, и др.) и экологическими (расселение по разным экологическим нишам) факторами разобщения популяций. Значение пространственной изоляции зависит от величины индивидуальной активности особей вида. К биологической изоляции могут относиться особенности поведения, изменения строения и физиологической активности сроков размножения и ряда других факторов, препятствующих скрещиванию. После оплодотворения возможны нарушения конъюгации хромосом и ряд других изменений, приводящих к развитию полностью или частично стерильных гибридов, а также гибридов с пониженной жизнеспособностью. Эволюционное значение разных форм изоляции состоит в том, что она закрепляет и усиливает генетические различия между популяциями.
Изменения частот генов, вызываемые приведенными выше факторами эволюции, носят случайный, ненаправленный характер, и даже их совместное действие не приводит к устойчивому осуществлению направленного процесса эволюции. Направляющим фактором эволюции является естественный отбор.
Естественный отбор – ведущий, направляющий фактор эволюционного развития органического мира. Естественный отбор следует понимать как избирательное выживание и возможность оставления потомства отдельными особями. Биологическое значение особи, давшей потомство, определяется вкладом ее генотипа в генофонд популяции. Отбор действует в популяциях и его объектами являются фенотипы отдельных особей. Фенотип организма формируется на основе реализации информации генотипа в определенных условиях среды. Таким образом, отбор из поколения в поколение по фенотипам ведет к отбору генотипов, так как потомкам передаются не признаки, а генные комплексы. Для эволюции имеют значение не только генотипы, но и фенотипы и фенотипическая изменчивость. Различают три основные формы естественного отбора: стабилизирующий (сохранение признаков вида со средними значениями в относительно постоянных условиях), движущий (действует в изменяющихся условиях среды и обеспечивает преимущество особям с некоторыми отклонениями от средней нормы), разрывающий или дизруптивный (способствует сохранению сразу множеству фенотипов и действует в разнообразных условиях).
5.2.4. Направления эволюционного процесса
С момента возникновения жизни развитие живой природы шло от простого к сложному, от низкоорганизованных форм к более высоко организованным и имело прогрессивный характер. А.Н. Северцов выделял три основных пути эволюционных преобразований: ароморфоз, идиоадаптация, общая дегенерация.
Ароморфозы (арогенез) – усложнения строения и функций организмов, которые ведут к общему повышению организации и жизнеспособности группы в новых условиях обитания. Приводят к возникновению новых крупных систематических групп – типов, классов. Например, предки млекопитающих и птиц приобрели ароморфозы важнейших систем: нервной, кровеносной, дыхательной и др., что обеспечило освоение ими более сложных сред обитания.
Идиоадаптации (аллогенез) – мелкие приспособления к специфическим условиям среды, полезные в борьбе за существование, но существенно не меняющие уровня организации. Классы насекомых, птиц и млекопитающих на основе многочисленных идиоадаптации (разнообразные преобразования различных органов) дали громадное многообразие видов.
Общая дегенерация (катагенез) – упрощение организации, образа жизни в результате приспособления к более простым условиям существования. Например, переход к паразитическому или сидячему образу жизни нередко сопровождается морфофизиологическими перестройками, редукциями некоторых органов и систем
В природе также наблюдается и биологический регресс, который характеризуется уменьшением численности особей группы, сокращением ареала, уменьшением числа и разнообразия дочерних групп. В итоге биологический регресс может привести к вымиранию группы. Исчезли древовидные плауны и хвощи, древние папоротники, большинство древних земноводных и пресмыкающихся. Регрессирующим является род выхухолей, состоящий всего из двух видов, семейство гинкговых, на грани вымирания находится уссурийский тигр, кондор и др.
5.2.5. Основные правила эволюции
Правило необратимости эволюции (правило Л. Долло): эволюционный процесс необратим, возврат к прежнему эволюционному состоянии, ранее осуществленному в ряду поколений предков, невозможен.
Правило происхождения от неспециализированных предков (правило Э. Копа): возникновение новых крупных групп, сопровождающихся повышением уровня организации, связано с примитивными неспециализированными формами.
Правило прогрессирующей специализации (правило Ш. Депере): организмы единожды ставшие на путь узкой специализации, в дальнейшем буду развиваться по пути все более глубокой специализации.
Правило адаптивной радиации (правило Г. Осборна): историческое развитие (филогенез) каждой группы организмов происходит путем разделения исходного ствола на несколько боковых ветвей, расходящихся в нескольких адаптивных направлениях.
Правило чередования главных направлений эволюции (правило И.И. Шмальгаузена): в процессе эволюции происходит чередование ее основных направлений (ароморфозы сменяются идиоадаптациями).
Биогенетический закон Геккеля–Мюллера: онтогенез представляет собой краткое повторение филогенеза.
5.3. Происхождение жизни на Земле
Существует несколько гипотез о происхождении жизни на Земле.
Креационизм – земная жизнь была создана Творцом. Представления о Божественном сотворении мира придерживаются последователи почти всех наиболее распространенных религиозных учений. Ни доказать, ни опровергнуть креационистическую концепцию в настоящее время невозможно.
Гипотеза вечности жизни – жизнь, как и сама Вселенная, существовала всегда, и будет существовать вечно, не имея начала и конца. Вместе с тем отдельные тела и образования – галактики, звезды, планеты, организмы – возникают и погибают, т.е. существование во времени ограничено. Жизнь могла распространяться от одной галактики к другой и эта идея «заноса» на Землю жизни из Космоса называется панспермией. Идеи «вечности и безначальности» жизни придерживались многие ученые, среди них С.П. Костычев, В.И. Вернадский.
Гипотеза самопроизвольного зарождения жизни из неживой материи. Идеи о самозарождении жизни высказывались еще со времен античности. На протяжении тысячелетий они верили в возможность постоянного самопроизвольного зарождения жизни, считая его обычным способом появления живых существ из неживой материи. По мнению многих ученых средневековья, рыбы могли зарождаться из ила, черви – из почвы, мыши – из тряпок, мухи – из гнилого мяса. В XVII в. итальянский ученый Ф. Реди экспериментально показал невозможность постоянного самозарождения живого. В нескольких стеклянных сосудах он поместил кусочки мяса. Часть из них он оставил открытыми, а часть прикрыл кисеей. Личинки мух появились только в открытых сосудах, в закрытых их не было. Принцип Реди: «живое – от живого». Окончательно версия о постоянном самозарождении живых организмов была опровергнута в середине XIX в. Л. Пастером. Опыты убедительно показывали, что в современную эпоху живые организмы любого размера происходят от других живых организмов.
Гипотеза биохимической эволюции. По представлениям, высказанным в 20-х гг. ХХ в. А.И.Опариным, а затем Дж. Холдейном, жизнь, а точнее, живое, возникло из неживой материи на Земле в результате биохимической эволюции.
5.3.1. Условия возникновения жизни при биохимической эволюции
В настоящее время учеными предложены более или менее вероятные объяснения, каким образом в первичных условиях Земли из неживой материи постепенно, шаг за шагом, развились разнообразные формы жизни. Возникновению жизни путем химической эволюции способствовали следующие условия:
- первоначальное отсутствие жизни;
- наличие в атмосфере соединений, обладающих восстановительными свойствами (при почти полном отсутствии кислорода О2);
- наличие воды и биогенных веществ;
- наличие источника энергии (относительно высокая температура, мощные электрические разряды, высокий уровень УФ-излучения).
5.3.2. Механизм возникновения жизни
Возраст Земли составляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад.
В 1924 г. русский академик А.И. Опарин выдвинул гипотезу о механизме зарождения жизни. В 1953 г. американские ученые С. Миллер и Г. Юри экспериментально подтвердили гипотезу образование органических веществ (мономеров) из газов, присутствующих в первичной атмосфере Земли.
В настоящее время имеется уже достаточно много неоспоримых доказательств того, что первичная атмосфера Земли была бескислородной и, вероятно, состояла главным образом из водяных паров H2O, водорода H2 и углекислого газа CO2 с небольшой примесью других газов (NH3, CH4, CO, H2S). Возникшая на Земле жизнь постепенно изменила эти условия и преобразовала химию верхних оболочек планеты.
Согласно биохимической теории А.И. Опарина в отсутствие кислорода и живых организмов, абиогено синтезировались простейшие органические соединения – мономеров, предшественники биологических макромолекул живого вещества и ряда других органических соединений.
Возможными источниками энергии для образования органических веществ без участия живых организмов, видимо, являлись электрические разряды, ультрафиолетовое излучение, радиоактивные частицы, космические лучи, ударные волны от метеоритов, попадавших в земную атмосферу, теплота от интенсивной вулканической деятельности. В отсутствие кислорода, который мог бы их разрушить, а также живых организмов, которые использовали бы их в качестве пищи, абиогенно образовавшиеся органические вещества накапливались в Мировом океане – «первичном бульоне».
Следующим шагом было образование более крупных полимеров из малых органических мономеров, опять же без участия живых организмов. Американский ученый С. Фокс в результате нагревания смеси сухих аминокислот получил полипептиды различной длины. Они были названы протеиноидами, т.е. белковообразными веществами. Видимо, на первобытной Земле образование таких протеиноидов и полинуклеотидов со случайной последовательностью аминокислот или нуклеотидов могло происходить при испарении воды в водоемах, остававшихся после отлива. Если полимер образовался, он способен влиять на образование других полимеров. Некоторые протеиноиды способны, подобно ферментам, катализировать определенные химические реакции: именно эта способность, наверное, была главной чертой, определившей их последующую эволюцию. Эксперименты показывают, что один полинуклеотид, возникший из смеси нуклеотидов может служить матрицей для синтеза другого.
Полипептиды благодаря их амфотерности формировали коллоидные гидрофильные комплексы (т.е. молекулы воды, образуя вокруг белковых молекул оболочку, обособляли их от всей массы воды). При этом отдельные комплексы ассоциировались друг с другом, что приводило к образованию обособленных от первичной среды капель коацерватов, способных поглощать и избирательно накапливать различные соединения. Естественный отбор способствовал выживанию наиболее устойчивых коацерватных систем, способных к дальнейшему усложнению. Дальнейшая самоорганизация сложных молекул, происходившая за счет концентрирования на границе между коацерватами и внешней средой молекул липидов, привела к образованию перегородок мембранного типа. Во внутренних полостях коацерватов, куда уже только выборочно проникать молекулы, началась эволюцию от химических реакций к биохимическим. Одной из важнейших ступеней этой теории явилось объединение способности полинуклеотидов с каталитической активностью белков-ферментов.
Точка зрения Опарина и его сторонников по существу сформировала гипотезу голобиоза: структурную основу доклеточного предка (биоида) составляют жизнеподобные открытые (коацерватные) микросистемы, типа клеточной, способные к элементарному обмену веществ при участии ферментного механизма. Первичной белковая субстанция.
Гипотеза генобиоза: первичной была макромолекулярная система, подобная гену, способная к саморепродукции. Первичной признана молекула РНК.
5.3.3. Начальные этапы развития жизни на Земле
Как полагают, первые примитивные клетки появились в водной среде Земли 3,8 млрд. лет назад – анаэробные, гетеротрофные прокариоты, они питались синтезированными абиогенно органическими веществами или менее удачливыми своими собратьями; энергетические потребности удовлетворяли за счет брожения.
При увеличении численности гетеротрофных прокариотических клеток запас органических соединений в первичном океане истощался. В этих условиях значительное преимущество при отборе должны были приобрести организмы, способные к автотрофности, т.е. к синтезу органических орг. веществ из неорганических. Видимо, первыми автотрофными организмами были хемосинтезирующие бактерии. Следующим этапом было развитие реакций с использованием солнечного света – фотосинтез.
Для первых фотосинтезирующих бактерий источником электронов был сероводород. Значительно позже у цианобактерий (синезеленых водорослей) развился более сложный процесс получения электронов из воды. В качестве побочного продукта фотосинтеза в земной атмосфере начал накапливаться кислород. Это явилось предпосылкой для возникновения в ходе эволюции аэробного дыхания. Способность синтезировать при дыхании большее количество АТФ позволяла организмам расти и размножаться быстрее, а также усложнять свои структуры и обмен веществ.
Считают, что предками эукариот были прокариотические клетки. Согласно теории клеточного симбиогенеза эукариотическая клетка представляет сложную структуру, состоящую из нескольких прокариотических клеток, которые взаимодополняют друг друга. Целый ряд данных свидетельствует о происхождении митохондрий и хлоропластов, а возможно, и жгутиков от ранних прокариотических клеток, ставших внутренними симбионтами большей по размерам анаэробной клетки. Глубокие преобразования в строении и функционировании значительно увеличили эволюционные возможности эукариот, которые, появившись всего 0,9 млрд. лет назад, смогли достигнуть многоклеточного уровня и сформировать современную флору и фауну. Для сравнения следует сказать, что с момента появления первых прокариотических клеток (3,8 млрд. лет назад) до появления первых эукариотических клеток потребовалось 2,5 млрд. лет.
5.3.4. Основные этапы развития биосферы
Эон Эра Период Возраст (начало), млн. лет Органический мир
1 2 3 4 5
Криптозой Архей 4500±100 Образование Земли. Возникновение прокариот и примитивных эукариот.
Протерозой 2600±100 Распространены водоросли, бактерии, все типы беспозвоночных.
Фанерозой Палеозой Кембрий 570±10 Процветание водорослей и водных беспозвоночных.
Ордовик 495±20 Силур 418±15 Появление наземных растений (псилофитов) и беспозвоночных.
Девон 400±10 Богатая флора псилофитов, появляются мхи, папоротниковидные, грибы, кистеперые и двоякодышащие рыбы.
Карбон 360±10 Обилие древовидных папоротников, исчезновение псилофитов. Доминируют земноводные, моллюски, рыбы; появляются рептилии.
Пермь 290±10 Богатая флора травянистых и семенных папоротников, появление голосеменных; вымирание древовидных папоротниковидных. Господство морских беспозвоночных, акул; развитие рептилий; вымирают трилобиты.
Мезозой Триас 245±10 Преобладают древние голосемянные; вымирают семенные папоротники. Преобладают земноводные, рептилии; появляются костистые рыбы, млекопитающие.
Юра 204±5 Господствуют современные голосемянные; появляются первые покрытосемянные; вымирают древние голосемянные. Господствуют гигантские рептилии, костистые рыбы, насекомые.
Мел 130±5 Доминируют современные покрытосемянные; сокращаются папоротники и голосемянные. Преобладают костистые рыбы, первоптицы, мелкие млекопитающие; вымирают гигантские рептилии.
Кайнозой Палеоген 65±3 Широко распространены покрытосемянные, особенно травянистые. Доминируют млекопитающие, птицы, насекомые. Исчезают многие рептилии, головоногие моллюски.
Неоген 23±1 Антропоген (четвертич.) 1,8 Современный растительный и животный мир. Эволюция и господство человека.
5.4. Многообразие живых организмов – основа организации и
устойчивости биосферы
5.4.1. Система органического мира Земли
Современное биологическое разнообразие: на Земле от 5 до 30 млн. видов. Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымирания. Биологическое разнообразие – наиболее ценный «ресурс» планеты. Биологическое разнообразие включает два понятия: генетическое разнообразие или многообразие генетических свойств у особей одного вида и видовое разнообразие или число различных видов внутри сообщества или всей биосферы. Биоразнообразие обеспечивает новыми источниками питания, энергии, сырья, химических и лекарственных продуктов. Генетическое разнообразие позволяет видам совершенствоваться, приспосабливаться, использовать необходимые ресурсы, найти место в биогеохимическом круговороте Земли. Биоразнообразие – страховая политика природы против катастроф.
Структура биологического разнообразия. Единицы системы – демы и популяции. Генофонд популяции.
Эволюция биологического разнообразия. Сквозная эволюционная тенденция – увеличение разнообразия, прерываемое резкими спадами в результате массовых вымираний видов.
Воздействие человека на биологическое разнообразие. Прямой ущерб в результате человеческой деятельности. Косвенный ущерб от воздействий, нарушающих сбалансированные соотношения и процессы в экосистемах.
Сохранение биологического разнообразия. Инвентаризация и охрана биологического разнообразия. Сочетание прав человека с правами животных. Биоэтика. Сочетание этических принципов и экономических интересов. Сохранение и естественная эволюция биологического разнообразия.
Биологическое разнообразие как индикатор воздействий. Используются как отдельные компоненты биологического разнообразия, так и суммарные показатели. Нарушение структуры функции или сукцессионной последовательности развития экосистемы обычно выражается в сокращении биологического разнообразия.
В настоящее время на Земле описано около 3 млн. видов живых организмов. В современной систематике живых организмов существует следующая иерархия таксонов: царство, отдел (тип в систематике животных), класс, порядок (отряд в систематике животных), семейство, род, вид. Кроме того, выделяют промежуточные таксоны: над- и подцарства, над- и подотделы и т.д. Ниже приведены основные крупные таксоны живых организмов, расположенные в пределах царств в последовательности эволюционного развития.
Неклеточные формы
ЦАРСТВО ВИРУСЫ
Вирусы – внутриклеточные паразиты, проявляют свойства живых организмов только попав внутрь клетки. Обычно вирусы состоят из молекулы нуклеиновой кислоты и белковой оболочки – капсида.
Клеточные формы
Надцарство Прокариоты
ЦАРСТВО АРХЕБАКТЕРИИ
ЦАРСТВО ЭУБАКТЕРИИ
ЦАРСТВО ПРОКАРИОТИЧЕСКИЕ ВОДОРОСЛИ: отдел Цианобактерии, отдел Прохлорофиты
Прокариоты – одноклеточные организмы, не имеют ядра. По способу питания среди бактерий встречаются фототрофы, хемотрофы, сапрофиты, паразиты. Сапротрофные бактерии участвуют в разложении органических останков растений и животных и в их минерализации до СО2, Н2О, Н2S, NH3 и других неорганических веществ. Вместе с грибами они являются редуцентами.
Надцарство Эукариоты
Эукариоты – одноклеточные или многоклеточные организмы, имеющие оформленное ядро и различные органоиды.
ЦАРСТВО ГРИБЫ
– подцарство Слизевики
– подцарство Грибы: отдел Хитридиомицеты, отдел Оомицеты, отдел Зигомицеты, отдел Аскомицеты или Сумчатые грибы, отдел Базидиомицеты, отдел Дейтеромицеты или Несовершенные грибы
– Лишайники
Грибы – эукариотические гетеротрофные организмы. Встречаются сапротрофы и паразиты. Грибы-сапрофиты играют важную роль в круговороте веществ в природе, минерализуя органические остатки отмерших растений и животных. Вместе со многими бактериями они являются редуцентами.
ЦАРСТВО РАСТЕНИЯ
– подцарство Багрянки: отдел Красные водоросли
– подцарство Настоящие водоросли: отдел Зеленые водоросли, отдел Золотистые водоросли, отдел Желто-зеленые водоросли, отдел Диатомовые водоросли, отдел Бурые водоросли, отдел Пирофитовые водоросли, отдел Эвгленовые водоросли
– подцарство Высшие растения: отдел Моховидные, отдел Риниовидные, отдел Плауновидные, отдел Хвощевидные, отдел Папоротниковидные, отдел Голосемянные, отдел Покрытосемянные (класс Однодольные, класс Двудольные).
Растения – эукариотические автотрофные фотосинтезирующие организмы. Растения являются продуцентами органических веществ и основным источником энергии для других живых организмов. Любые пищевые цепи начинаются с зеленых растений или их остатков. Флора – совокупность видов растений, обитающих на определенной территории.
ЦАРСТВО ЖИВОТНЫЕ
– подцарство Одноклеточные: тип Саркомастигофоры (класс Жгутиконосцы, класс Саркодовые), тип Споровики, тип Инфузории
– подцарство Многоклеточные: тип Губки, тип Кишечнополостные (класс Гидроидные полипы, класс Сцифоидные полипы, класс Коралловые полипы), тип Гребневики, тип Плоские черви (класс Моногенетические сосальщики, класс Трематоды, класс Ленточные черви), тип Круглые черви (класс Нематоды, класс Волосатики, класс Скребни, класс Коловратки), тип Кольчатые черви (класс Многощетинковые, класс Малощетинковые, класс Пиявки), тип Членистоногие (класс Ракообразные, класс Мечехвосты, класс Паукообразные, класс Многоножки, класс Насекомые), тип Моллюски (класс Брюхоногие, класс Двустворчатые, класс Головоногие), тип Иглокожие (класс Морские лилии, класс Морские звезды, класс Морские ежи, класс Голотурии), тип Хордовые (подтип Оболочники, подтип Бесчерепные и подтип Позвоночные, включающий классы – Круглоротые, Хрящевые рыбы, Костные рыбы, Земноводные, Пресмыкающиеся, Птицы, Млекопитающие).
Животные – эукариотические гетеротрофные организмы. В пищевых цепях выполняют роль консументов. Фауна – совокупность видов животных, обитающих на определенной территории.
5.4.2. Экологические факторы.
Структура и функционирование экологических систем
Экологические факторы – это отдельные элементы среды обитания, которые воздействуют на организмы. Каждая из сред обитания отличается особенностями воздействия экологических факторов.
По природе экологические факторы делят на абиотические и биотические, природные и антропогенные.
Абиотические факторы – компоненты неживой природы, прямо или косвенно воздействующие на организм (свет, температура, влажность, ветер, атмосферное давление, землетрясения, извержения вулканов, движение ледников, радиоактивное излучение, крутизна местности и др.).
Биотические факторы – воздействие на организм других живых организмов (внутривидовые, межвидовые; по типу взаимодействия – протокооперацию, мутуализм, комменсализм, внутривидовую и межвидовую конкуренции, паразитизм, хищничество, аменсализм, нейтрализм.
Антропогенные факторы – деятельность человека, приводящая либо к прямому воздействию на живые организмы, либо к изменению среды их обитания (охота, промысел, сведение лесов, загрязнение, эрозия почв и др.).
Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.
1. Закон толерантности (закон оптимума или закон В. Шелфорда) – каждый фактор имеет определенные пределы положительного влияния на организмы. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей (много «хорошо» – тоже «не хорошо»). Факторы среды имеют количественное выражение. По отношению к каждому фактору можно выделить зону оптимума (зону нормальной жизнедеятельности), зону пессимума (зону угнетения) и пределы выносливости организма. Способность живых организмов переносить количественные колебания действия экологического фактора в той или иной степени называется экологической валентностью или толерантностью.
2. Закон минимума (закон Ю. Либиха или правило ограничивающих факторов) – возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Так, продвижение вида на север может лимитироваться (ограничивается) недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами.
3. Гипотеза незаменимости фундаментальных факторов (В.Р. Вильямсон) – полное отсутствие в среде полное отсутствие в среде фундаментальных экологических факторов (физиологически необходимых; например, света, воды, углекислого газа, питательных веществ) не может быть компенсировано (заменено) другими факторами. Так, по данным «Книги рекордов Гиннеса» без воздуха человек может прожить до 10 мин., без воды – 10–15 суток, без пищи – до 100 дней.
Живые организмы находятся между собой и абиотическими условиями среды обитания в определенных отношениях, образуя тем самым, так называемые, экологические системы.
Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.
Биотоп – определенная территория со свойственными ей абиотическими факторами среды обитания (климат, почва).
Биогеоценоз – совокупность биоценоза и биотопа.
Экосистема (экологическая система) – система совместно обитающих живых организмов и условий их существования, связанных потоком энергии и круговоротом веществ. Экосистема = биоценоз + биотоп.
При всем многообразии органический мир представляет собой единое целое». Все виды живых организмов представляют собой различные формы существования живой материи. Как бы ни отличались друг от друга отдельные виды животных, растений и микроорганизмов, всем им присуще определенное биохимическое единство, выражающееся в общности химического состава (белков, углеводов, жиров, ферментных и гормональных систем и др.) и близости типов реакций, лежащих в основе процессов ассимиляции и диссимиляции. Например, химическое сходство нуклеиновых кислот, основных ферментов, хлорофилла растений и гемоглобина животных. В то же время имеются и специфические особенности биохимизма, отличающие животных, растений, грибов, бактерий, вирусов и даже одну особь данного вида от другой.
Огромное видовое разнообразие живых организмов обеспечивает постоянный биогеохимические круговороты веществ. Каждый из организмов, вступает в специфические взаимоотношения со средой и играет свою роль в трансформации веществ и энергии. Живые организмы входят в тот или иной биоценоз – совокупность популяций разных видов, обитающих на определенной территории.
Важное экологическое правило состоит в том, что чем разнороднее и сложнее биоценоз, тем выше его устойчивость, способность противостоять различным внешним неблагоприятным воздействиям. Одни и них сохраняются в течение длительного времени, другие закономерно изменяются. Процесс смены одного сообщества другим называется сукцессией. В ходе сукцессии увеличивается разнообразие входящих в состав биоценоза видов организмов, вследствие чего повышается его устойчивость.
Повышение видового разнообразия обусловлено тем, что каждый новый компонент биоценоза открывает новые возможности для других. Например, появление деревьев позволяет проникнуть в экосистему видам, живущим в подсистеме дерева: на коре, под корой, строящим гнезда на ветвях, в дуплах.
Объединение разнородных индивидуумов в популяции создает преимущества в борьбе за существование и обеспечивает более активные отношения вида со средой обитания, поскольку возникают более активные сложные формы групповой жизнедеятельности. Морфологическое разнообразие внутри вида, существование географических рас (подвидов) и биологических форм расширяют использование видом среды и имеют важное значение в борьбе за существование с другими видами. В состав биоценоза входят 4 функциональных компонента, обеспечивающих круговорот веществ:
- Продуценты – автотрофные организмы, способные производить органические вещества из неорганических, используя фотосинтез или хемосинтез (растения и автотрофные бактерии).
- Консументы (макроконсументы, фаготрофы) – гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов (животные, гетеротрофные растения, некоторые микроорганизмы).
- Редуценты (микроконсументы, деструкторы, сапротрофы, осмотрофы) – гетеротрофные организмы, питающиеся органическими остатками и разлагающие их до минеральных веществ (сапротрофные бактерии и грибы).
В экосистеме пищевые и энергетические связи идут в направлении: продуценты → консументы → редуценты. Питаясь друг другом, живые организмы образуют цепи питания. Каждое звено цепи называется трофическим уровнем. При передаче энергии в пищевой цепи с одного трофического уровня на другой большая часть энергии рассеивается в виде тепла (в соответствии со вторым законом термодинамики), и только около 10 % от первоначального количества передается по пищевой цепи.
Правило десяти процентов – на каждый следующий трофический уровень переходит примерно 10 % вещества и энергии предыдущего уровня.
Таким образом, биоценозы – целостные системы, где существование одних видов без других невозможно, так как их обмены веществ сопряжены и приспособлены друг к другу: одни виды используют продукты метаболизма других видов или их самих в качестве пищи. В биоценозе на основе взаимодействия составляющих их видов возникают новые формы отношений живых существ с неживой природой.
Энергия в разных формах связывает все организмы на Земле друг с другом и со средой их обитания. Почти вся энергия, за счет которой существует биосфера, поступает на Землю в виде солнечного излучения. Дополнительные источники, незначительные для биосферы в целом, но важные для некоторых организмов – это внутренней тепло Земли и притяжение Луны.
Порция солнечной энергии, поступающая в виде света, связывается фототрофами – организмами, способными преобразовывать световую энергию в энергию химических связей сложных органических веществ (растения используют 1 % солнечной энергии). Этот процесс называется фотосинтезом и является основой всей жизни на Земле. В результате фотосинтеза не только создается пища для всех животных, грибов и множества бактерий, использующих готовые органические вещества, но и выделяется в атмосферу кислород, необходимый для жизни большинства организмов.
Помимо энергии всем организмам необходимы элементы, входящие в состав неорганических веществ, в частности углерод, водород, кислород, азот. Они необходимы всем живым существам в больших количествах, в связи, с чем они получили название органогенных элементов. Всем организмам нужны также фосфор, сера, калий, кальций, железо, магний и другие элементы.
Все перечисленные элементы совершают в биосфере круговорота переходя от одних организмов к другим. Если какого-либо элемента организму не хватает, то он перестает расти и размножаться, несмотря на то, что все остальные необходимые элементы могут при этом присутствовать в достаточном количестве. Все это незаменимые ресурсы, поскольку каждый из них необходим для жизни.
В то же время биосфера Земли является ресурсом для жизни живых организмов. Например, разнообразные виды микробов (хемогетеротрофы, фотоавтотрофы и др.) в результате жизнедеятельности вырабатывают кислород, необходимый для жизни всех существ.
Бактерии, цианобактерии (сине-зеленые водоросли), микроскопические грибы, простейшие играют ведущую роль в жизни биосферы. Не будь микроорганизмов, круговорот веществ на планете не мог бы осуществляться. Условия, в которых ныне существуют высшие формы жизни (растения, животные), созданы микроорганизмами, прежде всего бактериями.
Мир бактерий разнообразен. Существуют сообщества микроорганизмов, образующие горные породы и называемые строматолитами. Древнейшие сообщества микроорганизмов, к которым относятся и строматолиты, создали ту биохимическую «машину» планеты, в которую затем встраивались растения и животные. Именно они создали первую на Земле пленку органического вещества и обогатили атмосферу кислородом.
Возникшие значительно позже растения и животные в свою очередь создали для бактерий новые экологические ниши. Так, особые сообщества микроорганизмов складываются в почве, прилегающей к корням растений. Или, например, некогда проглоченные с частицами органического вещества бактерии в ходе эволюции образовали сообщества в пищеварительном тракте млекопитающих.
Всюду на Земле можно встретить разнообразные формы жизни – от невидимых вирусов и бактерий до громадных китов и гигантских деревьев. Рост разнообразия живых организмов способствовал возрастанию устойчивости биосферы, ее развитию и совершенствованию, а также эволюционному развитию видов и сохранению энергии и ресурсов.
В ходе естественного отбора в составе биоценоза неизбежно сохраняются лишь те виды организмов, которые могут наиболее успешно размножаться именно в данном сообществе.
Таким образом, устойчивость биосферы в целом, ее способность эволюционировать определяется тем, что она представляет собой систему относительно независимых биоценозов. Взаимосвязь между ними ограничивается связями посредством неживых компонентов биосферы.
На всей земной поверхности и в глубинах Мирового океана условия жизни неоднородны. В различных регионах Земли степень видового разнообразия различна. В тундрах число видов высших сосудистых растений (т.е. без учета водорослей, мхов и лишайников) не превышает 200–300 на площади 100 км2, в тайге – 400–600, в степях – 800–900, в тропиках на 100 км2 приходится более чем 200 тыс. видов. Биологическое разнообразие животных увеличивается от полюсов к экватору и достигает своего пика в тропиках. Велико биологическое разнообразие в морях и океанах. Наиболее богаты прибрежные воды глубиной до 200 м. Жизнь существует даже на океаническом дне, откуда постоянно выбрасываются насыщенные солями жгучие растворы с температурой 300–450°С. Обладая разной толщиной, «пленка жизни» не прерывается нигде.
В истории Земли были катастрофы, когда биологическое разнообразие, как на суше, так и в океане резко сокращалось за короткие в геологическом масштабе сроки. Многие виды исчезали, земная кора опускалась или поднималась, менялись уровень моря, климат. Виды погибали, не приспособившись к новым условиям, но они сменялись новыми. Поэтому после их гибели происходило обновление менее приспособленных форм более приспособленными.
Биосфера Земли проявила свою устойчивость и способность развививаться, несмотря на серьезные изменения в облике Земли (например, в ледниковый период). Именно благодаря многообразию живым организмов, их способности выживать, приспосабливаться к изменяющимся условиям, размножаться биосфера Земли, хотя и изменяется, но не теряет своей устойчивости.
5.4.3. Глобальные экологические проблемы.
Концепции устойчивого развития
Появление на Земле около 40 тыс. лет назад человека разумного Вернадский рассматривал как естественную часть биосферы, а деятельность его – как важнейший геологический фактор. С появлением человека на биосферу Земли стало оказываться все возрастающее воздействие, как позитивное, но в большей мере – негативное.
Загрязнение – привнесение в окружающую среду или возникновение в ней новых (обычно не характерных для нее) вредных химических, физических, биологических агентов. Загрязнение окружающей среды может быть физическое (тепловое, радиоактивное, шумовое, электромагнитное, световое и др.), химическое (тяжелые металлы, пестициды, синтетические поверхностно активные вещества – СПАВ, пластмассы, аэрозоли, детергенты и др.) и биологическое (патогенные микроорганизмы и др.).
Ингредиентное загрязнение – совокупность веществ, количественно или качественно чуждых естественным биогеоценозам (бытовые стоки, ядохимикаты и удобрения, продукты сгорания и т.д.).
Параметрическое загрязнение – изменение качественных параметров окружающей природной среды (шумовое, тепловое, световое, радиационное, электромагнитное).
Биоценотическое загрязнение – воздействия, вызывающие нарушение в составе и структуре популяций живых организмов (перепромысел, направленная интродукция и акклиматизация видов и т.д.).
Стациально-деструкционное загрязнение (от слов стация – место обитания популяции, деструкция – разрушение) – воздействие, приводящее к нарушению и преобразованию ландшафтов и экосистем в процессе природопользования (вырубка лесов, эрозия почв, урбанизация и пр.).
Парниковый эффект – разогрев нижних слоев атмосферы, вследствие способности атмосферы пропускать коротковолновую солнечную радиацию, но задерживать длинноволновое тепловое излучение земной поверхности. Парниковому эффекту способствует поступление в атмосферу антропогенных примесей (диоксида углерода, пыли, метана, фреонов и т.д.). Отрицательные для человечества последствия парникового эффекта заключаются в повышении уровня Мирового океана в результате таяния материковых и морских льдов, теплового расширения океана и т.п. Это приведет к затоплению приморских равнин, усилению абразионных процессов, ухудшению водоснабжения приморских городов, деградации мангровой растительности и т.п. Увеличение сезонного протаивания грунтов в районах с вечной мерзлотой создаст угрозу дорогам, строениям, коммуникациям, активизирует процессы заболачивания и т.д.
Разрушение «озонового слоя». Слой атмосферы с наибольшей концентрацией озона на высоте 20–25 км называется озоносферой. «Озоновая дыра» – значительное пространство в озоносфере планеты с заметно пониженным (до 50% и более) содержанием озона. Основной причиной возникновения «озоновых дыр» является значительное содержание в атмосфере фреонов. Фреоны (хлорфторуглероды, или ФХУ) – высоколетучие, химически инертные у земной поверхности вещества, широко применяемые в производстве и быту в качестве хладагентов (холодильники, кондиционеры, рефрижераторы), пенообразователей и распылителей (аэрозольные упаковки). Истощение озонового слоя в атмосфере Земли приводит к увеличению потока ультрафиолетовых лучей на земную поверхность. Ультрафиолетовые лучи в небольших дозах необходимы живым организмам (стимуляция роста и развития клеток, бактерицидное действие, синтез витамина D и т.д.), в больших дозах губительны, из-за способности вызывать раковые заболевания и мутации.
Кислотные дожди – дождь, подкисленный до рН < 5,6 из-за растворения в атмосферной влаге антропогенных выбросов (диоксид серы, оксиды азота, хлороводород и пр.). Отрицательное воздействие кислотных дождей на растительность проявляется как в прямом биоцидном воздействии на растительность, так и в косвенном через снижение рН почв. Выпадение кислотных дождей приводит к ухудшению состояния и гибели целых лесных массивов, а также снижению урожайности многих сельскохозяйственных культур. Кроме того, отрицательное воздействие кислотных дождей проявляется в закислении пресноводных водоемов. Снижение рН воды вызывает сокращение запасов промысловой рыбы, деградацию многих видов организмов и всей водной экосистемы, а иногда и полную биологическую гибель водоема.
Деградация почвенного покрова. Деградация почв – ухудшение качества почвы в результате снижения плодородия. К явлениям деградации почв относятся: дегумификация почв (потеря почвами гумуса); промышленная эрозия почв (отчуждение почв городами, поселками, дорогами, линиями электропередач и связи, трубопроводами, карьерами, водохранилищами, свалками и т.д.); водная и воздушная эрозия (дефляция) почв (разрушение верхних слоев почвы под действием воды и ветра); вторичное засоление почв (результат неправильного орошения минерализованными или пресными водами); затопление, разрушение и засоление почв водами водохранилищ и др.
Деградация растительного покрова. К деградации растительного покрова ведут следующие антропогенные факторы: прямое уничтожение в ходе использования (рубка лесов, выкашивание, сбор с различными целями, стравливание домашними животными), при создании водохранилищ, в ходе открытых разработок ископаемых, при пожарах, в процессе распашки новых угодий; ухудшение условий жизни растений при орошении, осушении, засолении почв, изменении гидрологии водоемов, загрязнении среды токсичными химическими веществами и элементами, заносе вредных организмов (возбудителей болезней, конкурентов) и др.
Деградация животного мира. К сокращению или уничтожению видов животных ведут следующие антропогенные факторы: прямое уничтожение в результате промысла животных, добываемых ради меха, мяса, жира и пр., при применении химических веществ для борьбы с вредителями сельского хозяйства (при этом часто гибнут не только вредители, но и полезные для человека животные), ухудшение условий жизни животных в результате вырубки лесов, распашки степей, осушения болот, сооружения плотин, строительства городов, загрязнения атмосферы, воды, почвы и т.д. К числу вымерших животных относятся: тур, тарпан, морская (стеллерова) корова, бескрылая гагарка, лошадиная антилопа, нелетающий голубь дронт и др.
Демографическая проблема. Стремительный рост численности населения развивающихся стран часто называют «демографическим взрывом». Его начало приходится на вторую половину XX в. После Второй мировой войны большинство бывших колоний стало независимыми государствами. С помощью созданных в это же время международных организаций они предприняли энергичные усилия по улучшению жизни населения. Всемирной организации здравоохранения (ВОЗ) в короткие сроки, за одно-два десятилетия, удалось резко снизить детскую смертность, улучшить общее санитарное состояние жизненной среды населения этих стран (полнее обеспечить его питьевой водой, лекарствами, средствами гигиены и т. п.). О темпах ускорения наглядно свидетельствуют цифры: первый свой миллиард человечество отметило около 1830 г., второй – через 100 лет (1939 г.), третий – через 20 лет (1960 г.), четвертый – через 15 лет (1975 г.), пятый – через 12 лет (1987 г.), шестой – через 13 лет (2000 г.). В 2000 г. на Земле проживало 6 млрд. человек. Ежегодный чистый прирост составляет сейчас 78 млн. человек – почти столько живет в настоящее время во всей Германии. За сутки численность землян увеличивается почти на четверть миллиона человек, за час – на 10 тыс. Очевидные негативные следствия стихийного хода демографических процессов требуют его упорядоченности. Единственной приемлемой для этого формой является регулирование рождаемости.
Развивая цивилизацию, человек вырубает леса, распахивает степи, осушает болота, переселяет в новые места животных и пересаживает растения. Такое вмешательство в природу нарушает биологическое равновесие и в конечном итоге сокращает биологическое разнообразие. Если естественное вымирание животных в последние 100 млн. лет приводило к исчезновению в среднем одного вида за каждое тысячелетие, то с 1600 г. один вид исчезал каждые 10 лет, а с конце XX в. ежегодно с лица Земли безвозвратно исчезают по одному виду животных и растений. В настоящее время под угрозой исчезновения находятся почти 20 тыс. видов растений, свыше 1300 видов рептилий, около 1000 видов птиц и более 400 видов млекопитающих.
Исчезновение видов живых организмов нарушает тонкий баланс природы, который складывался миллионы лет. Обедневшие экологические системы (леса, луга, озера и т.д.) становятся неустойчивыми и подвергаются разрушению при любом изменении внешних условий. Это создает угрозу устойчивости биосферы, способствует ее разрушению, так как от одного исчезнувшего вида тянется скрытая цепочка последствий, подчас опасных не только для природы, но и для человечества.
Поэтому биологическое разнообразие планеты нуждается в охране. Для этого во всех странах мира создаются особо охраняемые природные территории (ООПТ): заповедники, заказники, национальные парки. Это участки нетронутой природы со всеми ее обитателями, они находятся под охраной государства. В настоящее время в России существует 101 заповедник (~1,5% территории страны) и 35 национальных парков (0,5%), а, например, в Люксембурге и Коста-Рике более 1/4 всей территории занимают охраняемые природные зоны.
Охрана природы должна быть повсеместной. На территории заповедников и национальных парков запрещены любая хозяйственная деятельность. Однако надо не только расширять сеть заповедников, но одновременно добиваться, чтобы было меньше отходов, загрязняющих Землю.
В 1992 г. в Рио-де-Жанейро (Бразилия) была подписана Международная конвенция о биологическом разнообразии. В ней выражена решимость общими усилиями сохранять и поддерживать богатство и разнообразие всего живого. Благотворительный Всемирный фонд дикой природы собирает пожертвования частных лиц и организаций на финансирование научных исследований, направленных на сохранение биологического разнообразия на Земле.
Многообразие живых организмов – основа устойчивости биосферы. Биосфера, являясь целостной, согласованно функционирующей системой имеет пределы своей устойчивости, и проблемы изучения стабильности и устойчивого развития биосферы является одной из фундаментальных. При выходе за эти пределы система проходит через цепь бифуркаций, скачкообразно меняет свои свойства и может прекратить свое существование. Интенсивное развитие техносферы за последние 50 лет привело к антропогенным воздействиям невиданных ранее масштабов. И если «наступление на природу» будет продолжаться все возрастающими темпами, то в недалеком будущей может произойти переход биосферы за пределы устойчивости.
Индикаторами приближения биосферы к границе неустойчивости являются загрязнения окружающей среды, потепление климата, утоньшение озонового слоя, уменьшение биологического разнообразия, необратимое изменение связей в биогеоценозах и т.д. Главной особенностью жизни является то, что в силу сложности любой конкретный тип скоррелированности в биоте всегда неустойчив и непременно распадается с течением времени.
Современное энергопотребление человеческого общества на 90% основано на невозобновляемых ресурсах, что приводит к нарушению устойчивости природных систем и их загрязнению.
Каждый живой организм адаптирован к своей экологической нише, в которой он может устойчиво существовать и развиваться. В этом смысле биосферу можно рассматривать как экологическую нишу устойчивого существования и развития цивилизованного человека в условиях НТР только при сохранении естественной биоты на больших территориях Земли и сокращении общего энергопотребления и оптимизации роста населения.
В связи с проблемой устойчивости экосистем возникла необходимость разработки концепции устойчивого развития. По своему замыслу принятие этой концепции должно было стимулировать разработку общей стратегии развития человеческого общества на базе экологически целесообразного природопользования, сохранения благоприятного для людей состояния окружающей среды, обеспечивающее приемлемое качество жизни для нынешнего и последующих поколений людей. Эту концепцию можно рассматривать в конечном итоге, как переход общества к ноосфере.
Существующая в настоящее время идеология «общества потребления» губительна для биосферы, для составляющих ее экосистем, для сохранения видового и экосистемного биоразнообразия, для вида Homo sapiens, выживание которого зависит в первую очередь от устойчивости биосферы, а, в конечном счете – от ее биологического разнообразия.
Каждый из видов, населяющих нашу планету, есть результат много миллионнолетней эволюции, носитель неповторимых генетических особенностей. Мы обязаны сохранить и передать потомкам биологическое разнообразие, существующее на Земле и являющееся следствием неповторимости эволюционных путей, приведших к формированию каждого вида. То принципиально новое, что внес наш век в понимание проблемы органического многообразия, сводится к следующему: сохранение биологического разнообразия – непременное условие существования человека на Земле.
5.5. Генетика и эволюция
5.5.1. Генетические признаки и носители
наследственной информации
Генетика – наука, изучающая наследственность и изменчивость живых организмов.
Наследственность заключается в способности организмов передавать особенности строения, функции, развития своему потомству. Наследственность обеспечивает преемственность между поколениями и обусловливает существование видов. Кроме того, выделяют понятие наследования, подразумевая конкретный способ передачи наследственной информации в ряду поколений, который может быть различен в зависимости от форм размножения, локализации генов в хромосомах и т. п. В основе наследственности лежат структурные и функциональные возможности генетической информации клеток.
Полинуклеотидная последовательность ДНК практически у всех организмов (исключение составляют РНК-содержащие вирусы) являются первичным носителем генетической информации. Прокариоты и многие вирусы содержат одну молекулу ДНК, все участки которой кодируют макромолекулы. В эукариотических клетках генетический материал распределен в нескольких хромосомах. Хромосома содержит одну молекулу ДНК, полинуклеотидная последовательность которой состоит из участков, кодирующих и некодирующих макромолекулы. Некодирующие области ДНК играют структурную роль, позволяя участкам генетического материала упаковываться определенным образом. Другая часть некодирующей ДНК является регуляторной и участвует во включении генов, направляющих синтез белка.
Единицей наследственной информации, далее не делимыми в функциональном отношении, является ген, ответственный за формирование какого-либо элементарного признака. Ген представлен участком ДНК (реже РНК), кодирующий синтез одной макромолекулы: полипептида, рРНК, либо тРНК. Гены находятся в определенных участках хромосом – локусах. Гены в одинаковых локусах гомологичных хромосом и отвечающие за развитие вариантов какого-либо признака, называют аллельными. Их принято обозначать буквами латинского алфавита. Аллельные гены могут быть доминантными или преобладающими (А, В) или рецессивными или подавляемыми (a, b).
Доминантным называют аллель, обеспечивающий развитие признака как в гомо-, так и в гетерозиготном состоянии. Рецессивным – аллель, проявляющийся только в гомозиготном состоянии. Разные аллельные формы генов возникают в результате мутации – изменения структуры полинуклеотидной последовательности ДНК соответствующих локусов гомологичных хромосом. Ген может мутировать неоднократно, образуя много аллелей. Если в генофонде популяции существует серия мутаций какого-либо гена, определяющая многообразие вариантов признака, то имеет место явление множественного аллелизма. Однако при образовании следующего поколения аллели комбинируются попарно у каждого индивидуума.
Совокупность генов гаплоидного набора хромосом получила название генόм, а информация внеядерных ДНК (митохондрии, пластиды) – плазмон.
Фенотип – совокупность всех признаков и свойств организма.
Генотип – совокупность всех генов организма.
Генофонд – совокупность генов популяции.
Кариотип – совокупность морфологических признаков хромосом вида (размер, форма, детали строения, число и т. д.).
Фенотип формируется в процессе реализации наследственной информации генотипа под воздействием факторов окружающей среды.
В живой природе существуют различия не только между индивидами разных видов, но и между индивидами одного и того же вида, сорта, породы и т.п. В пределах одного вида практически не встречаются совершенно идентичные особи. Эта изменчивость хорошо видна в пределах вида Homo sapiens – Человек разумный, каждый представитель которого имеет свои индивидуальные особенности.
Изменчивость – свойство живых организмов, противоположное наследственности. Оно заключается в изменении наследственных факторов и их проявлений в процессе развития организмов. Изменчивость неразрывно связана с наследственностью.
5.5.2. Основные генетические процессы. Биосинтез белка
Функциональные возможности генетического материала (способность сохраняться и воспроизводиться при смене клеточных поколений, реализовываться в онтогенезе и в ряде случаев изменяться) связаны с протеканием четырех генетических процессов – репликакции и репарации ДНК, биосинтеза белка и генетической рекомбинации.
Процесс генетической информации в клетках от ДНК через различные виды РНК к полипептидам и белкам называют экспрессией (проявлением) генов. Образующиеся при биосинтезе белка полипептидные цепи определяют признаки клеток, формирую белковые структуры или управляя процессами обмена веществ в качестве ферментов.
Репликация ДНК или генетическое удвоение ДНК происходит перед каждым нормально протекающим делением у эукариот (ДНК ядер, митохондрий, пластид), перед каждым делением прокариотических клеток и размножением ДНК-вирусов. Репликация является необходимой предпосылкой для сохранения имеющейся наследственной информации в ряду последовательных поколений клеток и организмов. Синтез макромолекул ДНК, а также РНК и белков происходит по типу матричного процесса, т.е. новые молекулы синтезируется в точном соответствии с химической структурой уже существующих молекул. Во время репликации ДНК каждая из двух ее цепей служит матрицей для образования новой цепи. В качестве предшественников (мономеров) для построения новой ДНК в клетке синтезируются трифосфаты четырех дезоксирибонуклеозидов: дАТФ, дТТФб дЦТФб дГТФ. Репликация ДНК начинается с раскручивания двойной спирали и разделения ее цепей за счет ферментативного разрыва водородных связей между спаренными азотистыми основаниями. Фермент ДНК-полимераза движется вдоль каждой из цепей, связывая между собой нуклеотиды, комплементарные нуклеотидам старой цепи.
Репарация ДНК – способность молекул ДНК к самовосстановлению, «исправлению» возникающих в ее цепях изменений. В восстановлении участвуют не менее 20 белков: узнающих измененные участки ДНК и удаляющих их из цепи, восстанавливающих правильную последовательность нуклеотидов и сшивающих восстановленный фрагмент с остальной молекулой ДНК.
Биосинтез белка – система сложных и последовательных реакций, в котором участвуют молекулы ДНК, все типы РНК, АТФ, ферменты, аминокислоты. Процесс состоит из нескольких этапов.
1. Транскрипция – синтез иРНК на матрице одной из цепей ДНК, т.е. переписывание информации, хранящейся в молекуле ДНК. На ДНК-матрице образуется три вида РНК: информационная, или матричная (иРНК), транспортная (тРНК) и рибосомная (рРНК). Синтез иРНК состоит из фазы инициации, элонгации и терминации. Образующаяся «сырая» иРНК состоит из экзонов (кодирующих участков) и интронов (некодирующих участков). Далее процесс созревания иРНК подразумевает удаление из нее интронов – процессинг и сшивку экзонов – сплайсинг. В виде иРНК генетическая информация для синтеза полипептида передается от ДНК к рибосомам; тРНК доставляют к рибосомам аминокислоты (каждую аминокислоту доставляет особый, именно для нее предназначенный вид тРНК). Главным компонентом рибосом является рРНК.
2. Трансляция – процесс перевода генетической информации иРНК в последовательность аминокислот в полипептиде. Процесс осуществляется в рибосомах на иРНК, в ней в виде последовательности нуклеотидов содержится генетический код о белковых молекулах.
В состав белков входит 20 аминокислот, их кодируют четыре вида нуклеотидов (аденин А, гуанин Г, цитозин Ц, урацил У) по три.
1 аминокислота = 3 нуклеотида
Три нуклеотида, образующих кодовый знак, называют триплетом. Например, ААА – лизин, АГА – аргинин, ГЦУ – аланин. Триплеты в молекуле РНК называют кодонами, а комплементарные им триплеты молекул тРНК – антидодонами. Из 64 триплетов 3 не кодируют аминокислоты – это стоп-сигналы (УАА, УАГ, УГА).
Многие аминокислоты кодируются более чем одним кодоном (АГУ, АГЦ, УЦУ и др. кодируют серин); в этом смысле код является вырожденным.
Генетический код одинаков, т.е. универсален для всех живых организмов (вирусов, бактерий, грибов, растений, животных) – во всех группах он слагается из одних тex же дезоксирибонуклеотидов, включающих два пуриновых осованиния (аденин А и гуанин Г) и два пиримидиновьгх (цитозин Ц и тимин Т).
Во всем органическом мире строго соблюдаются закономерности, называемые правила Чаграффа:
1. Сумма пуриновых нуклеотидов равна сумме пиримидиновых нуклеотидов: (А + Г = Т + Ц).
2. Содержание аденина равно содержанию тимина: А = Т.
3. Содержание гуанина равно содержанию цитозина: Г = Ц.
4. Суммы Г + Т и А + Ц равны, т.е. Г + Т = А + Ц.
5. Содержание Г + Ц и А + Т может варьировать в довольно значительных пределах.
5.5.3. Основные законы генетики
Первый закон Менделя (закон единообразия): при скрещивании гомозиготных особей, все гибриды первого поколения единообразны. Например, при скрещивании растений с желтыми семенами АА и растений с зелеными семенами аа, гибриды первого поколения оказываются все с желтыми семенами Аа.
Второй закон Менделя (закон расщепления): при моногибридном скрещивании гетерозиготных особей во втором поколении наблюдается расщепление по фенотипу 3:1 и по генотипу 1:2:1.
Третий закон Менделя (закон независимого наследования): гены разных аллельных пар и соответствующие им признаки наследуются независимо.
Взаимодействие аллельных генов осуществляется в трех формах: полное доминирование, неполное доминирование и независимое проявление (кодоминирование – пример формирование групп крови человека).
Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.
Закон Моргана (закон сцепленного наследования): гены, локализованные в одной хромосоме наследуются сцеплено. Признаки, гены которых находятся в половых хромосомах, наследуются сцеплено с полом (гемофилия – несвертываемость крови, дальтонизм – неспособность различать красный и зеленый цвета и др.).
Анализ поведения генов свободно скрещивающейся популяции характеризует закон Харди-Вайнберга: любая популяция, в которой распределены пары генов А и а, соответствует соотношению р2 + 2pq + q2, находится в генетическом равновесии (р2 – число гомозиготных особей по доминантному гену с гонотипом АА; q2 – число гомозиготных особей по рецессивному гену с гонотипом аа; pq – число гетерозиготных особей). Доли этих генов в последующих поколениях будут оставаться постоянными, если их не изменит отбор, мутационный процесс или какая-либо случайность.
5.5.4. Наследственная и ненаследственная изменчивость
Различия между видами и различия между особями внутри вида наблюдаются благодаря всеобщему свойству живого – изменчивости. Выделяют ненаследственную и наследственную изменчивость.
Наследственная (генотипическая) изменчивость связана с изменениями генетипа и передаче этих изменений из поколения в поколение. В зависимости от варьирования генетического материала различают две формы наследственной изменчивости: комбинативную и мутационную. Комбинативная изменчивость связана с образованием у потомков сочетаний генов без изменения их молекулярной структуры, формирующихся при перекомбинации генов и хромосом в процессе полового развития (кроссинговер, независимое расхождение хромосом, случайное сочетание гамет при оплодотворении). Мутационная изменчивость связана с приобретением новых признаков в результате мутаций. Мутации – изменения наследственных свойств организма в результате перестроек и нарушений в генетическом материале организма (хромосомах и генах). Мутация – основа наследственной изменчивости в живой природе. Мутации индивидуальны, возникают внезапно, скачкообразно, ненаправленно, наследуются. По характеру изменения генотипа различают геномные (полиплоидия, анэуплоидия), хромосомные и генные мутации.
Причинами хромосомных мутаций могут являться: потеря хромосомой фрагмента после ее разрыва в двух местах; поворот участка на 180° после разрыва хромосомы (инверсия); обмен двух хромосом своими кусками (транслокация); удвоение участка в хромосоме (дупликация).
Причины генных мутаций: замена одного основания другим (например, А на Г); выпадение одного основания (делеция); включение одного дополнительного основания (дупликация); поворот ДНК на 180° (инверсия).
Следствием генетических и хромосомных мутаций являются, например, болезнь Дауна (трисомия по 21-й хромосоме), синдром Тернера (45 Х0), альбионизм, облысение и др.
Ненаследственная (фенотипическая, модификационная) изменчивость связана с изменениями фенотипа под влиянием внешней среды на экспрессию генов. Генотип остается неизменным. Границы изменчивости признака, возникающей под действием факторов среды, определяется ее нормой реакции. Главные особенности модификационных изменений: кратковременность (не передаются следующему поколению), групповой характер изменений, охватывающий большинство особей в популяции, имеют приспособительный характер.
5.5.7. Генная инженерия и клонирование
как факторы дальнейшей эволюции
Генетическая (генная) инженерия – совокупность методов конструирования лабораторным путем (in vitro) генетических структур и наследственно измененных организмов, т.е. создание новых, не существующих в природе сочетаний генов.
Возникла в нач. 70-х гг. 20 в. Генетическая инженерия основана на извлечении из клеток какого-либо организма гена (кодирующего нужный продукт) или группы генов и соединении их со специальными молекулами ДНК (т. н. векторами), способными проникать в клетки другого организма (главным образом микроорганизмов) и размножаться в них, т.е. создание молекул рекомбинантных ДНК.
Рекомбинантные (чужеродные) ДНК привносят в реципиентный организм новые генетические и физико-биохимические свойства. К числу таких свойств можно отнести синтез аминокислот и белков, гормонов, ферментов, витаминов и др.
Применение методов генетической инженерии открывает перспективу изменения ряда свойств организма: повышение продуктивности, резистентности к заболеваниям, увеличение скорости роста, улучшения качества продукции и др. Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, – трансгеном. Благодаря переносу генов у трансгенных животных возникают новые качества, а дальнейшая селекция позволяет закрепить их в потомстве и создать трансгенные линии.
Методы генетической инженерии позволяют создавать новые генотипы растений быстрее, чем классические методы селекции и появляется возможность целенаправленного изменения генотипа – трансформации.
Генетическая трансформация заключается главным образом в переносе чужеродных или модифицированных генов в эукариотические клетки. В клетках растений возможна экспрессия генов, перенесенных не только от других растений, но и от микроорганизмов и даже животных.
Получение растений с новыми свойствами из трансформированных клеток (регенерация) возможно благодаря их свойству топитотентности, т.е. способность отдельных клеток в процессе реализации генетической информации к развитию в целый организм.
Клонирование – это воспроизведение живого существа его неполовых (соматических) клеток. Клонирование органов и ней – важнейшая задача в области трансплантологии, травматологии и других областях медицины и биологии. При пересадке клонированных органов не возникают реакции отторжения и отсутствуют возможные неблагоприятные последствия (например, рак, развивающийся на фоне иммунодефицита). Клонированные органы – это спасение для людей, попавших в автомобильные аварии или иные катастрофы, а также нуждающихся в радикальной помощи вследствие каких-либо заболеваний. Клонирование может дать бездетным людям возможно, иметь своих собственных детей, помочь людям, страдающим тяжелыми генетическими заболеваниями. Так, если гены, определяющие какое-либо наследственное заболевание, содержатся в хромосомах то в яйцеклетку матери пересаживается ядро ее собственной соматической клетки, тогда появится ребенок, лишенный опасных генов, копия матери. Если эти гены содержатся в хромосомах матери, в ее яйцеклетку будет перемещено ядро соматической клетки отца и появится здоровый ребенок, копия отца. Дальнейший прогресс человечества во многом связан с развитием биотехнологии. Вместе с тем необходимо учитывать, что неконтролируемое распространение генно-инженерных живых организмов и продуктов может нарушить биологический баланс в природе и представлять угрозу здоровью человека.
Контрольные вопросы
Каковы основные биологические уровни организации материи?
В чем проявляются основные свойства живых систем?
Что включается в понятие «биосфера»?
Каковы функции биосферы?
Какие факторы определяют стабильность биосферы?
Что лежит в основе принципов эволюции, воспроизводства и развития живых систем?
Каковы абиогенные факторы, необходимые для возникновения жизни?
В чем заключаются законы наследственности, открытые Г. Менделем?
Какова структура генетического кода живых организмов?
10. Какие положения включает синтетическая теория эволюции?
6. ЧЕЛОВЕК: ПРОИСХОЖДЕНИЕ, ФИЗИОЛОГИЯ, ЗДОРОВЬЕ
6.1. Человек: физиология, здоровье,
эмоции, творчество, работоспособность
6.1.1. Человек как единство биологического и социального.
Антропогенез
Человек – это целостное единство биологического (организменого), психического и социального уровней, которые формируются из природного и социального, наследственного и прижизненно приобретенного, т.е. человек является целостной многосложной биосоциальной системой. При этом человеческий индивид – это не простая арифметическая сумма биологического, психического и социального, а их интегральное единство, приводящее к возникновению новой качественной ступени – человеческой личности.
Определяющим условием становления человека является труд, возникновение которого ознаменовало собой превращение животного предка в человека. В процессе трудовой деятельности человек постоянно изменяет условия своего существования, преобразуя их в соответствии со своими постоянно развивающимися потребностями, создает мир материальной и духовной культуры, которая творится человеком в той же мере, в какой сам человек формируется культурой. Труд невозможен в единичном проявлении и с самого начала выступает как коллективный, социальный.
Развитие трудовой активности полностью изменило природную сущность предка человека. В социальном отношении труд повлек за собой формирование новых, социальных качеств человека: языка, мышления, общения, убеждений, ценностных ориентации, мировоззрения и др. В психологическом отношении он имел своим следствием преобразование инстинктов в двух планах: в плане их подавления, торможения (подчинения контролю разума) и в плане их преобразования в новое качественное состояние сугубо человеческой познавательной деятельности – интуицию.
Все, чем обладает человек, чем он отличается от животных, является результатом его жизни в обществе. И это относится не только к опыту, который индивид приобретает в течение своей жизни. Ребенок появляется на свет уже со всем анатомо-физиологическим богатством, накопленным человечеством за прошедшие тысячелетия. При этом характерно, что ребенок, не впитавший в себя культуру общества, оказывается самым неприспособленным к жизни из всех живых существ. Вне общества нельзя стать человеком. Известны случаи, когда в силу неблагоприятного стечения обстоятельств совсем маленькие дети попадали к животным. И что же? Они не овладели ни прямой походкой, ни членораздельной речью, а произносимые ими звуки были подражанием звуков тех животных, среди которых они жили. Их мышление оказалось столь примитивным, что о нем можно говорить лишь с известной долей условности. Это яркий пример того, что человек – постоянно действующий приемник и передатчик социальной информации, понимаемой в самом широком смысле слова как способ деятельности.
Исходным пунктом понимания человеческой личности является трактовка человека как субъекта и продукта трудовой деятельности, на основе которой формируются и развиваются социальные отношения. Такое понятие социальности, однако, не отрицает биологического компонента в человеческой личности, также имеющего универсальный характер.
Биологическое и социальное, существующие в нераздельном единстве в человеке, в абстракции фиксируют лишь крайние полюсы в многообразии человеческих свойств и действий. Так, если идти в анализе человека к биологическому полюсу, мы «спустимся» на уровень существования его организменных (биофизических, физиологических) закономерностей, ориентированных на саморегуляцию вещественно – энергетических процессов как устойчивой динамической системы, стремящейся к сохранению своей целостности. В этом аспекте человек выступает как носитель биологической формы движения материи.
Но ведь он не просто организм, не просто биологический вид, а в первую очередь субъект общественных отношений. Если, таким образом, идти в анализе человека к его социальной сущности начиная от морфологического и физиологического уровня и далее к его психофизиологической и духовной структуре, то мы тем самым переместимся в область социально-психологических проявлений человека как личности.
Организм и личность – две неразделимые стороны человека. Своим организменным уровнем он включен в природную связь явлений и подчиняется природной необходимости, а своим личностным уровнем обращен к социальному бытию, обществу, истории человечества, культуре.
Биологическая сторона человека детерминируется главным образом наследственным (генетическим) механизмом. Социальная же сторона человеческой личности обусловлена процессом вхождения человека в культурно-исторический контекст социума. Ни то ни другое в отдельности, а только их функционирующее единство может приблизить нас к пониманию человека. Это, разумеется, не исключает, что в разных познавательных и практических целях акценты на биологическое или социально-психологическое в человеке могут несколько смещаться в ту или в иную сторону. Но в итоговом осмыслении непременно должно осуществиться совмещение двух сущностей человека.
Можно и нужно исследовать, например, то, как проявляется природная, биологическая сущность общественно развитого человека или, напротив, социально-психологическая сущность природного начала в человеке, но само понятие человека, его личности и в том и в другом исследовании должно основываться на понятии единства биологического, социального и психического. Иначе рассмотрение покинет область собственно человеческой сферы и примкнет либо к естественно-научным и биологическим исследованиям, имеющим свою частную научную цель, либо к культурологии, отвлекающейся от непосредственно действующего человека.
Сходство и отличия человека от животных. Сходство человека с животными определяется, во-первых, вещественным составом и строением. Мы состоим из тех же белков и нуклеиновых кислот, что и животные, и многие структуры и функции нашего тела такие же, как у животных. Чем выше на эволюционной ступени стоит животное, тем больше его сходство с человеком. Во-вторых, человеческий зародыш проходит в своем развитии те же стадии, которые прошла эволюция живого. И, в-третьих, у человека имеются рудиментарные органы, которые выполняли важные функции у животных и сохранились у человека, хотя не нужны ему.
Однако и отличия человека от животных фундаментальны. К ним, прежде всего, относится разум. Изучение высших животных показало, что они обладают многим из того, на что раньше считались способными только люди. В экспериментах с обезьянами обнаружено, что они могут понимать слова, сообщать с помощью компьютера о своих желаниях. Но чем не обладают самые высшие животные, так это способностью к понитийному мышлению, т.е. к формированию отвлеченных, абстрактных представлений о предметах, в которых обобщены основные свойства конкретных вещей.
Этология получает все больше данных о том, что в поведении человека и животных много общего. Животные испытывают чувства радости, горя, тоски, вины и т.д.; у них есть любопытство, внимание, память, воображение. Тем не менее, остается справедливым, что хотя животные имеют очень сложные формы поведения и создают изумительные произведения (например, паутина, которую ткет паук), человек, отличается от всех животных тем, что до начала работы имеет план, проект, модель постройки. Благодаря способности к понятийному мышлению человек сознает, что он делает.
Другим важным отличием является то, что человек обладает речью. У животных может иметь место очень развитая система общения с помощью сигналов. Но только у человека есть то, что И.П. Павлов назвал второй сигнальной системой – общение с помощью слов. Этим человеческое общество отличается от других общественных животных.
Способность к труду – еще одно фундаментальное отличие человека от животных. Конечно, все животные что-то могут делать, а высшие животные способны к сложным видам деятельности. Обезьяны, например, используют палки в виде орудий для доставания плодов. Но только человек способен изготавливать орудия труда. С этим связаны утверждения, что животные приспосабливаются к окружающей среде, а человек преобразует ее и что, в конечном счете, труд создал человека.
Человек – один из 3 млн. известных сейчас биологических видов на Земле. Место в системе животного царства: класс млекопитающие, отряд приматы, семейство гоминиды, род человек, в котором до нашего времени дожил только один вид – Человек разумный (Homo sapiens).
Человечество представляет собой общемировую популяцию биологического вида, составную часть экосистемы Земли. Организм человека развивается по общим для всех живых видов законам. Ч. Дарвин распространил на человека основные положения эволюционной теории и доказал его происхождение от «ниже стоящих видов животных». Происхождение человека, становление его как вида называется антропогенезом.
Самые древние предки человека возникли 5–8 млн. лет назад. Это произошло на юге, вероятно, в Восточной Африке. Поэтому первые из известных ныне гоминид получили название австралопитеки (от лат. australis – южный). Среди них 2–3 млн. лет назад выделился род человек (Нomo). Его первые представители – древнейшие люди, в том числе человек умелый (Homo habilis) и человек прямоходящий (Homo erectus), к которому относят питекантропов и синантропов (300 тыс. – 2 млн. лет назад). Им на смену пришли древние люди – неандертальцы (Homo neandertaliensis), исчезнувшие относительно недавно – примерно 40 тыс. лет назад. В это же время (40–50 тыс. лет назад) появились кроманьонцы – прямые предки современных людей, вместе с которыми они составляют единый вид – Человек разумный (Homo sapiens).
Движущими силами антропогенеза являются биологические и социальные факторы. Биологические факторы – это наследственность, изменчивость, борьба за существование и естественный отбор. Социальные факторы – трудовая деятельность, общественный образ жизни, речь (II сигнальная система) и мышление.
Для человека свойственны не только биологические, но социальные адаптации к условиям окружающей среды. Вне человеческого общества само формирование человека невозможно.
Таким образом, человек имеет биосоциальную природу. Он растет и развивается под воздействием двух программ. Биологическая программа определяет строение и физиологические особенности человеческого организма. Она сформировалась в результате биологической эволюции, передается по наследству, ее материальным носителем являются хромосомы. Социальная программа – формирование личности человека под влиянием окружающих его условий. Она сформировалась в результате развития человеческого общества, не передается по наследству. Социальную сущность человека составляют культура, образование, мораль, совесть и т.п.
Вид Человек разумный (Homo sapiens), к которому относятся современные люди, в настоящее время разделен на 3 или 5 больших рас. В первом случае это европеоидная (евразийская), монголоидная (азиатско-американская) и австрало-негроидная (экваториальная), во втором – европеоидная, монголоидная, американская, австралоидная и негроидная расы. Расы появились в результате расселения и географической изоляции, видимо, популяций неоантропов, живших в разных природно-климатических условиях. С формированием социальных взаимоотношений и ослаблением действия биологических факторов темпы эволюции человека как вида резко снизились, и ни одна из рас не достигла видового обособления. Различия между расами заключается в морфологических особенностях: цвет кожи, волос, глаз, форма носа, губ и.т.д. Эти различия, скорее всего, связаны с адаптацией к условиям окружающей среды. Так, темная кожа негроидов предохраняла организм от ярких солнечных лучей, в шапке курчавых волос создаются воздушные прослойки, защищающие от жары. Светлая кожа европеоидов пропускает ультрафиолетовые лучи и этим предохраняет от рахита, узкий выступающий нос способствует согреванию вдыхаемого воздуха. Монголоидная раса характеризуется прямыми жесткими волосами, уплощенностью лица, уменьшающей возможность обморожения, сильно выдающимися скулами, наличием эпикантуса (складки в углу глаза) – адаптациями к суровому, с частыми пылевыми бурями климату Центральной Азии.
О единстве вида Homo sapiens свидетельствует то, что все расы человека равноценны в биологическом и психологическом отношениях и находятся на одном и том же уровне эволюционного развития. Представители всех рас в пределах нормы реакции способны к достижению больших высот в развитии культуры и цивилизации. Также о видовом единстве свидетельствуют неограниченные возможности скрещиваний с образованием плодовитого потомства
Между природной средой и обществом существуют сложные взаимодействия, обмен веществом и энергией. Взаимоотношения общества и природы – воздействие человеческого общества (антропогенных факторов) на природу и природы (природных факторов) на здоровье и хозяйственную деятельность человека. С одной стороны, человек с все возрастающей силой воздействует на природу. С другой стороны, природа по-прежнему воздействует на человека. Человек (общество) связан с природой своим происхождением, существованием, своим будущим. Окружающая человека природная среда влияла и влияет на формирование биологического вида Homo sapiens, рас и этносов. Территориальное расселение людей, их материальная деятельность, размещение производственных сил зависят от количества, качества и местоположения природных ресурсов.
Появившись на Земле 2–3 млн. лет назад человек был собирательлем. Около 1,6 млн. лет назад человек научился пользоваться огнем. Это позволило ему заселить территории с умеренным климатом и заняться охотой. Использование огня и изобретение оружия привело к массовому уничтожению (перепромыслу) крупных млекопитающих средних широт. Это послужило причиной первого экологического кризиса (кризиса консументов). Этот кризис заставил человека перейти от присваивающего типа хозяйства (охота и собирательство) к производящему (скотоводство и земледелие).
Первые земледельческие цивилизации возникли в районах недостаточного увлажнения, что потребовало создания оросительных систем. В результате эрозии и засоления почв произошли локальные экологические катастрофы в бассейнах рек. Тигр и Евфрат, а сведение лесов привело к появлению пустыни Сахара на месте плодородных земель. Так проявил себя кризис примитивного земледелия. Переход к аграрной (сельскохозяйственной) культуре называют неолитической революцией, так как человек перешел от присваивающей экономики к экономике производящей. Важными отличительными особенностями жизни человека стали оседлость и полуоседлость, что предполагало тесный контакт с территорией, которую он обрабатывал.
Экологические последствия деятельности неолитических земледельцев и скотоводов были весьма разнообразны. Практиковавшееся в то время подсечно-огневое земледелие позволяло не только освобождать новые территории для расширения земледелия, получать необходимые минеральные соли для подкормки культурных растений, но и. приводило к обширным пожарам, в результате которых выгорали большие территории леса, погибало много животных. Распашка земель приводила к разрушению естественных экологических ниш многих животных. Сельскохозяйственные животные также оказали огромное влияние на природные комплексы. Конкурируя с дикими копытными, они вытесняли их с естественных пастбищ. В то же время скопление большого количества крупного рогатого скота на ограниченных участках, расположенных в непосредственной близости к человеческим поселениям, приводило к сведению травяного покрова. Органическое истощение почв в результате выращивания сельскохозяйственных культур, вырубка лесов при заготовке древесины, перевыпас домашних животных – все это, в конечном счете, приводило к эрозии почв, надолго выводившей их из хозяйственного оборота.
Позднее земледелие продвинулось на территории достаточного увлажнения, в районы лесостепи и леса, в результате чего началась интенсивная вырубка лесов. Развитие земледелия и нужда в древесине для строительства домов и кораблей привели к катастрофическому уничтожению лесов в Западной Европе. Сведение лесов в прошлом и настоящем вызывает изменение газового состава атмосферы, климатических условий, водного режима, состояния почв. Массовое уничтожение растительных ресурсов Земли характеризуется как кризис продуцентов.
С XVIII в. в результате промышленной, а затем научно-технической революций на смену доиндустриальной эпохе приходит индустриальная. За последние 100 лет потребление возросло в 100 раз. В настоящее время на одного жителя Земли каждый год добывается и выращивается примерно 20 т сырья, которое перерабатывается в конечные продукты массой 2 т, то есть 90% сырья превращается в отходы. Из 2 т конечного продукта в течение того же года выбрасывается не менее 1 т. Появление огромного количества отходов, причем часто в виде несвойственных природе веществ, привело к возникновению еще одного кризиса – кризиса редуцентов. Редуценты не успевают очищать биосферу от загрязнения, часто они на это просто не способны биологически. Это приводит к нарушению круговорота веществ в биосфере.
Помимо загрязнения биосферы различными веществами происходит ее тепловое загрязнение – добавление тепловой; энергии в приземный слой тропосферы в результате сжигания огромного количества горючих полезных ископаемых, а также использования атомной и термоядерной энергии. Следствием этого может стать глобальное потепление климата. Этот кризис получил название термодинамического.
Еще одним экологическим кризисом является снижение надежности экологических систем, в частности, в результате снижения их видового разнообразия, разрушения озонового слоя, и т.д.
Усиливающееся воздействие человека на природу в результате роста населения и научно-технического прогресса имеет не только экологические последствия. Нарастание экологической напряженности проявляется и в социальных последствиях. К негативным социальным последствиям относятся: нарастающая нехватка продовольствия в мире, рост заболеваемости населения в городах, возникновение новых болезней, экологическая миграция населения, возникновение локальных экологических конфликтов из-за создания экологически опасных в глазах населения предприятий, экологическая агрессия – вывоз токсичных технологических процессов и отходов в другие страны и т.д.
6.1.2. Физиологические особенности человека
Физиология изучает функции живого организма, отдельных органов, систем органов, а также механизм регуляции этих функций.
Человек представляет собой сложную саморегулирующуюся и самообновляющуюся систему клеток и неклеточных структур, которые в процессе развития образуют ткани, органы и системы органов, объединенных клеточными, гуморальными и нервными механизмами регуляции в целостный организм.
Ткани. Совокупность клеток, сходных по происхождению, строению и функции, образует ткань. Выделяют четыре группы тканей: эпителиальные, соединительные, мышечные и нервную. Ткани образуют органы.
Эпителиальные ткани (однослойный и многослойный эпителий) покрывают поверхность тела, выстилают изнутри органы и стенки полостей тела, образуют железы. Они выполняют защитную, секреторную, выделительную функции; обеспечивают обмен веществ между организмом и окружающей средой.
Соединительные ткани (рыхлая и плотная волокнистые соединительная ткани, жировая ткань, хрящевая и костная ткани, кровь, лимфа) выполняют функции: трофическую (связанную с участием клеток в обмене веществ), защитную (фагоцитоз, выработка иммунитета), механическую (образуют строму органов, связки, скелет), пластическую (участвуют в процессах регенерации, заживления ран), гомеостатическую (обеспечивают поддержание постоянства внутренней среды организма).
Мышечные ткани (гладкая мышечная ткань, поперечно-полосатая скелетная и сердечная мышечная ткани) обладают свойствами сократимости возбудимости и обеспечивают в организме двигательные процессы.
Нервная ткань составляет основу нервной системы, она представлена нервными клетками и нейроглией. Основными свойствами нервной ткани являются возбудимость и проводимость. В рецепторах возникает возбуждении, которое передается в центральную нервную систему, оттуда к рабочим органам, вызывая ответную реакцию на внешние и внутренние раздражения.
Орган – обособленная часть тела, имеющая определенную форму, строение, функции и положение в организме. Все органы снабжены нервами, кровеносными и лимфатическими сосудами. Регуляция работы органов и систем органов осуществляется нервным и гуморальным путем.
Гуморальная (жидкостная) регуляция осуществляется за счет гормонов, медиаторов, ионов, продуктов обмена, выделяемых клетками одних тканей органов в кровь, лимфу и воздействующих на клетки других тканей и органов, изменяя их работу. Ведущая роль в этом способе регуляции функций принадлежит железам внутренней секреции.
Нервная регуляция происходит рефлекторно и в отличие от гуморальной, она обеспечивает более быструю перестройку функций органов и организма в целом в соответствии с определенными условиями существования.
Деятельность всех структур организма, начиная с клетки и заканчивая системой органов, согласованна и подчинена единому целому, сохранения относительного постоянства внутренней среды организма. Способность сохранять постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом. Особенностью организма является способность его к саморегуляции, что обеспечивает устойчивость индивидуума к воздействию факторов внешней среды. Нервный и гуморальный механизмы регуляции взаимосвязаны. Активные химические вещества, образующиеся в организме, способны оказывать свое воздействие и на нервные клетки, изменяя их функциональное состояние. Образование и поступление в кровь многих активных химических веществ находится, в свою очередь, под регулирующим влиянием нервной системы. В этой связи правильнее говорить о единой нервно-гуморальной системе регуляции функций организма.
Опорно-двигательная система образована скелетом и мышцами. С ее деятельностью связана одна из ведущих функций всего организма – движение. Скелет и его соединения являются пассивной частью аппарата движения, а прикрепленные к костям скелетные мышцы – активной.
Скелет человека состоит из более 200 костей и их соединений. Он выполняет опорную, защитную, двигательную функции. Кроме того, кости участвуют в минеральном обмене и кроветворении (красный костный мозг).
Скелетные мышцы (около 400 мышц) выполняют в теле человека ряд функций связанных с перемещением тела и его частей в пространстве, дыхательными движениями, жеванием, глотанием, мимикой, артикуляцией звуков и т.д. Мышцы работаю рефлекторно, т.е. сокращаются под влияние нервных импульсов через неврно-мышечный синапс (медиатором служит ацетилхолин), поступающих из центральной нервной системы. Корковый отдел двигательного анализатора находится в передней центральной извилине коры больших полушарий, но непосредственно мышцы получают импульсы от нейронов серого вещества спинного мозга, продолговатого и среднего мозга.
Пищеварительная система представляет собой комплекс органов, осуществляющих процесс механической и химической обработки пищи, всасывание переработанных веществ и выведение наружу непереваренных и неусвоенных составных частей пищи. Сложные органические вещества пищи (белки, жиры, углеводы) распадаются на более простые, которые всасываются в кровь или лимфу усваиваются организмом как пластический и энергетический материал. В пищеварительной системе различают пищеварительный канал и пищеварительные железы, открывающиеся в него своими выводными протоками. Пищеварительный канал имеет длину 8–10 м подразделяется на отделы: полость рта, глотка, пищевод, желудок, тонкая и толстая кишка. Пищеварительный центр находится в продолговатом мозге. Наиболее крупные пищеварительные железы – поджелудочная железа и печень.
Поджелудочная железа состоит из экзокринной части, вырабатывающей панкреатический сок (поступает в двенадцатиперстную кишку) и эндокринной части, секретирующей в кровь гормоны инсулин и глюкогон.
Печень состоит из долек, образованных печеночными клетками. Печень вырабатывает желчь (по желчному протоку поступает в двенадцатиперстную кишку), активирующая действие всех пищеварительных ферментов, эмульгирующая жиры. Помимо участи в пищеварении печень выполняет барьерную функцию в организме, обезвреживая ядовитые вещества, образующиеся в процессе обмена или поступающие извне. В клетках печени синтезируется гликоген.
Обмен веществ – одно из основных свойств живых организмов. Суть его состоит в постоянном обмене веществ и энергии между организмом и внешней средой. Совокупность всех химических превращений (т.е. процессов ассимиляции и диссимиляция) в живом организме, обеспечивающих его жизнедеятельность, называют обменом веществ (метаболизмом). В период роста организма преобладает ассимиляция во взрослом организме устанавливается относительное равновесие между ассимиляцией и диссимиляцией; в старческом возрасте ассимиляция отстает от диссимиляции. Процессы превращения жиров, углеводов и белков строго согласованы между собой.
Обмен белков. Аминокислоты, входящие в состав белков, подразделяют на заменимые и незаменимые. Суточная потребность в белках составляет около 80 – 150 г и зависит от интенсивности физической нагрузки. При избытке поступающих с пищей белков они превращаются в жиры и углеводы. Белки пищи расщепляются ферментами пищеварительных соков до аминокислот, которые всасываются в кровь. В регуляции белкового обмена наиболее важную роль играют гормоны щитовидной железы.
Обмен углеводов. Углеводы – основной источник энергии в организме. При расщеплении 1 г высвобождается 17,6 кДж энергии. Суточное потребление углеводов должно составлять около 500 г. При избытке их в пище углеводы могут превращаться в жиры, а при недостатке они могут образовываться из белков и жиров. Сложные углеводы пищи расщепляются в пищеварительном тракте до моносахаридов, которые с током крови попадают в печень, где из них синтезируется гликоген. Гормоны адреналин, глюкагон и адренокортикотропный гормон вызывают повышение расщепления гликогена, тогда как инсулин тормозит распад гликогена и способствует его синтезу из глюкозы в печени. Согласованное действие этих гормонов сохраняет определенный уровень глюкозы в крови.
Обмен жиров. Жиры содержат наибольшие запасы энергии. При распаде 1 г выделяется 38,9 кДж энергии. Половина энергетических затрат обеспечивается за счет окисления жирных кислот и глицерина. Суточная потребность в жирах составляет 70 – 80 г. Избыточное употребление в пищу углеводов и белков приводит к отложению жира в организме. В регуляции жирового обмена существенную роль играют железы внутренней секреции – надпочечники, гипофиз, щитовидная железа.
Водно-солевой обмен. Вода составляет около 70% массы тела. Суточная потребность в воде для взрослого организма соответствует 2,5 – 3 л. Воду, которую человек получает в виде питья (1,5 л) и в составе пищевых продуктов (1 – 1,2 л). Воду также образуется при окислительном распаде в организме белков, жиров и углеводов (500 мл). Центр регуляции потребности воды находится в гипоталамусе. Организм нуждается в поступлении не только воды, но и минеральных веществ для поддержания кислотно-щелочного равновесия (натрий, калий, хлор), в обеспечении процессов возбудимости нервной и мышечной тканей (калий), в образовании костного скелета (фосфор, кальций, магний), для гемоглобина, миоглобина (железо) и т.д. Важную роль в организме играют витамины – группа биологически активных органических соединений различной химической природы, поступающих в организм с пищей растительного и животного происхождения, часто являющихся составной частью ферментов.
Дыхательная система. В процессе дыхания различают три этапа: внешнее (легочное) дыхание, заключающееся в обмене газов в легких между организмом и средой; транспорт газов кровью; тканевое дыхание, состоящее из газообмена в тканях и биологического окисления в митохондриях. Внешнее дыхание обеспечивается системой органов дыхания, которая включает носовую полость, гортань, трахею, бронхи и легкие. Находясь в спокойном состоянии, человек вдыхает и выдыхает около 500 см3 воздуха. При глубоком вдохе человек может вдохнуть еще около 1500 см3 воздуха. Регуляция дыхания осуществляется дыхательным центром, расположенным в продолговатом мозге. Гуморальная регуляция дыхания заключается в том, что увеличение в крови концентрации СО2 повышает возбудимость дыхательного центра, что обусловливает учащение и углубление дыхания. На дыхательные движения оказывает влияние кора больших полушарий, что выражается в возможности произвольно задерживать дыхание, изменять его ритм и глубину.
Выделительная система. Основными органами выделения являются почки. Они способствуют поддержанию постоянства ионного состава, осмотического давления, рН крови и внеклеточной жидкости, удаляют из организма многие вредные и ядовитые вещества. В выделении участвуют также легкие (выводят СО2, Н2О и некоторые летучие вещества), кишечник (соли тяжелых металлов, продукты превращения жёлчных пигментов), потовые железы (выделяют с потом воду, мочевую кислоту, мочевину, аммиак, соли и др.). Регуляция деятельности почек осуществляется нейрогуморальными механизмами.
Внутренняя среда организма. Кровь, лимфа, тканевая жидкость образуют внутреннюю среду организма. Кровеносная и лимфатическая системы обеспечивают гуморальную связь между органами, объединяя обменные процессы в общую систему. Относительное постоянство физико-химических свойств внутренней среды способствует существованию клеток организма в довольно неизменных условиях и уменьшает влияние на них внешней среды.
Кровь выполняет следующие функции: транспортную, распределения теплоты, регуляторную, защитную, участвует в выделении, поддерживает постоянство внутренней среды организма. В организме взрослого человека содержится около 5 л крови, в среднем 6 – 8 % от массы тела. Потеря 1/3 –1/2 объема крови может привести к смерти. Кровь представляет собой непрозрачную красную жидкость, состоящую из плазмы (55%) и взвешенных в ней клеток, форменные элементов (45%) – эритроцитов, лейкоцитов и тромбоцитов. При переливании небольших доз крови от донора (человека дающего кровь) реципиенту (принимающему кровь) необходимо учитывать группу крови. Людей с I группой крови называются универсальными донорами, так как эту группу можно переливать всем четырем группам. Людей с IV группой называют универсальными реципиентами, так как им можно переливать любую группу крови. Кровь II группы может быть перелита II и IV группам, кровь III группы может быть перелита III и IV группам. При переливании больших доз крови используют только одногруппную кровь.
Иммунитет – способ защиты организма от генетически чужеродных веществ и инфекционных агентов. 3ащитные реакции организма обеспечиваются клетками фагоцитами, а также белками – антителами.
Лимфа – бесцветная жидкость; образуется из тканевой жидкости и не содержит эритроцитов, имеет различный состав в зависимости от особенностей их обмена веществ (лимфа, оттекающая от печени, имеет наибольшее количество белка, от кишечника – липидов).
Благодаря кровообращению кровь осуществляет связь всех органов тела человека и выполняет свойственные ей функции. Движение крови по сосудам обеспечивается органами кровообращения, которые представлены центральным пульсирующим органом – сердцем и сосудами – артериями, капиллярами и венами. Сердечная мышца обладает свойством автономии, способностью сокращаться под влиянием импульсов, возникающих в само сердце. Работа сердца заключается в ритмическом нагнетании крови из вен в артерии. Эта функция выполняется благодаря попеременным ритмическим сокращениям и расслаблениям мышечных волокон миокарда. Систола (сокращение) и диастола (расслабление) согласованы и составляют цикл работы сердца. В норме частота сердечных сокращений взрослого человека колеблется от 60 до 80 в 1 мин, у спортсменов 40 – 50, у новорожденных 140. Регуляция сердечной деятельности осуществляется блуждающим (парасимпатическим) нервом, который вызывает урежение силы сердечных сокращений, и симпатическими волокнами, оказывающими ускоряющее и усиливающее действие. Центры, регулирующие деятельность сердца, находятся в продолговатом и спинном мозге. Кроме того, имеются центры регуляции сердечной деятельности в гипоталамусе и коре больших полушарий. Большую роль в регуляции деятельности сердца играют различные гуморальные влияния. Гормон надпочечников адреналин учащает и усиливает работу сердца, ацетилхолин (медиатор) обладает противоположным эффектом, гормон тироксин учащает сердечный ритм. При резких физических (нагрузках или состоянии эмоционального напряжения мозговой слой надпочечников выбрасывает в кровь большие количества адреналина, что приводит к резкому усилению сердечной деятельности.
Кровеносные сосуды тела объединяют в большой и малый круги кровообращения. Сосуды большого круга снабжают кровью органы, сосуды малого круга обеспечивают газообмен в легких. Аорта дает начало большому кругу кровообращения, назначение которого – питание кровью, богатой кислородом и питательными веществами, всего тела человека. В капиллярах артериальная кровь насыщается углекислым газом и продуктами распада и превращается в венозную. Венозная кровь собирается сначала в мелкие, а затем в крупные вены и, наконец, по двум полным венам возвращается в правое предсердие. Здесь заканчивается большой круг кровообращения. Малый (легочный) круг кровообращения начинается из правого желудочка, откуда кровь направляется в легкие. Там благодаря газообмену венозная кровь превращается в артериальную, затем возвращается в левое предсердие, а оттуда – в левый желудочек.
Нервная система регулирует работу органов, осуществляет согласованную деятельность разных систем органов, обеспечивает связь организма с внешней средой, а также сознательную деятельность людей. Выполнение этих функций связано с особенностями строения и функционирования нервных клеток, их отростков и соединений (синапсов). Основными свойствами нервного волокна и тела нервной клетки являются возбудимость и проводимость. Наиболее характерным свойством клеточной мембраны не только нейронов, и всех живых клеток является поддержание разности потенциалов между цитоплазмой и внеклеточной жидкостью – потенциала покоя, причем внутренняя сторона мембраны заряжена отрицательно по отношению к наружной. Потенциал покоя обусловлен неравенством концентраций ионов К+, Nа+ и Сl– по обе стороны клеточной мембраны и неодинаковой проницаемостью мембраны для этих ионов. Разность потенциалов у большинства клеток создается диффузией ионов К+ из цитоплазмы в наружную среду, а ионов Сl– наружной среды в цитоплазму. Нервная регуляция носит рефлекторный характер. Рефлексом называют ответную реакцию организма на раздражение рецепторов, осуществляемую через центральную нервную систему (ЦНС). Путь, по которому распространяется возбуждение при осуществлении рефлекса, называют рефлекторной дугой. Рефлекторные дуги состоят из следующих компонентов: рецептора, воспринимающего раздражение; чувствительного (центростремительного) нервного волокна, по которому возбуждение, передается от рецептора в ЦНС; нервного центра – группы вставочных (ассоциативных) нейронов, расположенных на различных уровнях ЦНС и передающих нервные импульсы с чувствительных нервных клеток на двигательные; двигательного (центробежного) нервного волокна, передающего возбуждение от ЦНС к исполнительному органу, деятельность которого изменяется в результате рефлекса. Нервная система анатомически подразделяется на центральную (спинной и головной мозг) и периферическую (нервы, нервные узлы, сплетения, нервные окончания. В зависимости от характера иннервации органов и тканей нервную систему делят на соматическую и вегетативную. Соматическая нервная система регулирует произвольные движения скелетной мускулатуры и обеспечивает чувствительность. Вегетативная нервная система регулирует деятельность внутренних органов, кровеносной системы, желез внутренней секреции и обмен веществ.
Спинной мозг расположен в позвоночном канале и состоит из серого (внутренний слой) и белого (наружный слой) вещества, с отходящими отростками нейронов. Спинной мозг выполняет две важные функции: рефлекторную и проводниковую. Как рефлекторный центр спинной мозг осуществляет двигательные и вегетативные рефлексы. Двигательные нейроны спинного мозга иннервируют все мышцы туловища и конечностей. С вегетативными центрами спинного мозга связаны важнейшие вегетативные рефлексы: сосудодвигательный, пищевой, дыхательный, дефекации, мочеиспускания, половой. Рефлекторную функцию спинной мозг осуществляет во взаимодействии с головным мозгом. Проводниковая функция производится за счет восходящих и нисходящих путей белого вещества.
Головной мозг находится в мозговом отделе черепа. Масса головного мозга у взрослых людей составляет около 1400 – 1600 г. Он состоит из пяти отделов: переднего, промежуточного, среднего, заднего (мост и мозжечок) и продолговатого. Полушария переднего мозга человека являются эволюционно более новыми и достигают наибольшего развития (до 80% массы мозга). Продолговатый мозг, варолиев мост (задний мозг), средний и промежуточный образуют ствол головного мозга. От головного мозга отходят 12 пар черепно-мозговых нервов.
Продолговатый мозг выполняет две функции: проводниковую и рефлекторную – центры дыхания, сердечной деятельности, сосудодвигательный, центры безусловных пищевых рефлексов (сосания, глотания, отделения пищеварительных соков), защитных рефлексов (кашля, чихания, мигания, слезоотделения, рвоты). С деятельностью продолговатого мозга, кроме того, связаны рефлексы положения тела, изменения тонуса шейных мышц и мышц туловища. Белое вещество продолговатого мозга.
Задний мозг состоит из варолиева моста и мозжечка. Проводящие пути моста связывают продолговатый мозг и мозжечок с большими полушариями. Основными функциями мозжечка являются координация движений и нормальное распределение мышечного тонуса.
Средний мозг (четверохолмие) состоит из двух ножек и крыши (пластинки четверохолмия). Он играет важную роль в регуляции мышечного тонуса и в появлении установочных рефлексов, обеспечивающих сохранение правильного положения тела в пространстве. Четверохолмие является центром зрительных и слуховых ориентировочных рефлексов.
Промежуточный мозг включает зрительные бугры (таламус), надбугорную область (эпиталамус), подбугорную область (гипоталамус) и коленчатые тела. Сверху к нему прилегает эпифиз, снизу – гипофиз. Таламус является подкорковым центром всех видов чувствительности, за исключением обонятельной. Кроме того, он регулирует и координирует внешнее проявление эмоций (мимику, жесты, изменение дыхания, пульса, давления). В гипоталамусе находятся высшие центры вегетативной нервной системы, обеспечивающие постоянство внутренней среды, а также регулирующие обмен веществ, температуру тела. С гипоталамусом связаны чувство голода, жажды и насыщения, регуляция сна и бодрствования. Гипоталамус контролирует деятельность передней доли гипофиза и вырабатывает гормоны, поступающие в заднюю долю гипофиза. В состав надбугорья входит эпифиз. Ядра эпиталамуса принимают участие в работе обонятельного анализатора. В коленчатых телах находятся подкорковые центры зрения и слуха.
Передний мозг представлен правым и левым полушариями, которые соединены пластинкой белого вещества – мозолистым телом. Белое вещество представляет собой проводящие пути полушарий. Среди белого вещества находятся ядра серого вещества (подкорковые структуры).
Кора больших полушарий представляет собой слой серого вещества толщиной в 2–4 мм. Она образована нервными клетками (14–17 млрд.). Многочисленные складки, извилины и борозды значительно увеличивают площадь коры (до 2000–2500 см ). Различные области коры определяют разные функции, с чем связано выделение в ней ряда зон. Двигательная зона коры расположена в передней центральной извилине лобной доли, зона кожно-мышечной чувствительности – в задней центральной извилине теменной доли. Зрительная зона находится в затылочной доле, слуховая – в височной. Центры обоняния и вкуса функционально связаны между собой и расположены на внутренней поверхности височной и лобных долей. Ассоциативные зоны коры (в частности, теменная доля) связывают различные области-коры. Здесь происходит интеграция всех импульсов, поступающих в мозг. Деятельность этих зон лежит в основе высших психических функции человека (памяти, способности к логическому мышлении и обучению, воображению), обеспечивающих возможность целесообразной реакции поведения. Они играют важную роль в формировании условных рефлексов.
Вегетативная нервная система является частью нервной системы, регулирующей деятельность внутренних органов (дыхания, кровообращения, пищеварения, выделения и др.). Она влияет на обмен веществ и рост; играет ведущую роль в поддержании постоянства внутренней среды и в приспособительных реакциях организма. Центральная часть вегетативной нервной системы расположена в среднем, продолговатом и спинном мозге. Вегетативная нервная система состоит из двух частей: симпатической и парасимпатической. К большинству внутренних органов подходят как симпатические, так и парасимпатические нервные волокна (двойная иннервация), которые обычно оказывают противоположные влияния (например, парасимпатическое влияние – ослабление и замедление сердечной деятельности, симпатическое – усиление и ускорение). Это имеет большое значение в приспособлении организма к меняющимся условиям среды. Деятельность вегетативной нервной системы не подчинена воле человека.
Высшая нервная деятельность – деятельность высших отделов центральной нервной системы, обеспечивающих наиболее совершенную приспособляемость животных и человека к условиям среды. Основой высшей нервной деятельности у млекопитающих является кора больших полушарий вместе с подкорковыми ядрами переднего мозга. Положения о рефлекторной деятельности мозга были высказаны И.М.Сеченовым в 1863 г. в книге «Рефлексы головного мозга». Идеи И.М. Сеченова получили развитие в трудах И.П. Павлова. Всю совокупность рефлексов, происходящих в организме, И.П. Павлов разделил на две группы: безусловные и условные.
Безусловные рефлексы – врожденные, передающиеся по наследству (слюноотделение, глотание, дыхание и т.д.), видовые, имеют постоянные рефлекторные дуги, осуществляются в ответ на адекватное раздражение на уровне спинного мозга и ствола мозга, подкорковых ядер.
Условные рефлексы – приобретенные организмом в течение жизни, индивидуальные, не имеют готовых рефлекторных дуг, они формируются при определенных условиях, непостоянные, могут выработаться и исчезнуть, осуществляются на любое воспринимаемое организмом раздражение; формируются на базе безусловных рефлексов и осуществляются за счет деятельности коры головного мозга. При действии условного раздражителя (например, света) в коре возникает очаг возбуждения. Последующее действие безусловного раздражителя (например, пищи) сопровождается появлением второго очага возбуждения в коре. Между ними возникает временная связь (происходит замыкание, по Павлову). После нескольких сочетаний условного и безусловного раздражителей связь становится более прочной. Теперь достаточно только одного условного раздражителя, чтобы вызвать рефлекс. Условные рефлексы не только вырабатываются, но и исчезают или ослабляются при изменении условий существования в результате торможения. И.П. Павлов различал два вида торможения условных рефлексов: безусловное (внешнее) и условное (внутреннее). Безусловное (внешнее) торможение возникает в результате действия нового раздражителя достаточной силы. В коре головного мозга при этом возникает новый очаг возбуждения, который вызывает угнетение существующего очага возбуждения. У человека, например, при острой зубной боли перестает болеть сильно пораненный палец. Условное (внутреннее) торможение развивается по закономерностям условного рефлекса, т.е. если действие условного раздражителя не подкрепляется действием безусловного раздражителя. Благодаря торможению в коре исчезает ненужная временная связь.
Таким образом, в коре происходит сложное взаимодействие процессов возбуждения и торможения, причем кора способна различать и разделять отдельные раздражения (анализ) наряду с возможностью обобщать, объединять возбуждения, возникающие в различных ее участках (синтез).
Поведение любого животного гораздо проще, чем поведение человека. Особенностями высшей нервной деятельности человека являются высокоразвитая психическая деятельность, сознание, речь, способность к абстрактно-логическому мышлению. Высшая нервная деятельность человека сформировалась исторически в ходе трудовой деятельности и необходимости общения. Опираясь на особенности высшей нервной деятельности человека и животных, И.П. Павлов разработал учение о первой и второй сигнальных системах.
Первую сигнальную систему составляет восприятие окружающего мира, связанное с анализом и синтезом непосредственных сигналов, которые приходят от зрительных, слуховых, обонятельных и других рецепторов. Вторая сигнальная система возникла и развилась у человека в связи с появлением речи. Она отсутствует у животных. Вторая сигнальная система обусловлена специфической особенностью высшей нервной деятельности человека – восприятием слышимых (произносимых) или видимых (при чтении) слов. Сигнальное значение слова связано не с простым звукосочетанием, а с его смысловым содержанием. Развитие словесной сигнализации сделало возможным обобщения и абстракции, находящие свое выражение в понятийной деятельности человека.
Накопление, хранение и обработка информации – важнейшее свойство нервной системы. Различают два вида памяти: кратковременную и долговременную. В основе кратковременной памяти лежит циркуляция нервных импульсов по замкнутым нейронным цепям. Это может продолжаться от нескольких секунд до 10–20 мин. Информация, хранящаяся в кратковременной памяти, быстро «стирается». В процессе обучения нервные импульсы неоднократно проходят по одним и тем же нервным путям, оставляя в них след. Материальной основой долговременной памяти являются различные структурные изменения, в цепях нейронов, вызванные электрохимическими процессами возбуждения. В долговременной памяти информация хранится в доступном для извлечения виде. В настоящее время найдены пептиды, вырабатываемые нервными клетками и влияющие на процесс памяти. Определенная роль в формировании памяти принадлежит эмоциям. При эмоциональном возбуждении усиливается циркуляция нервных импульсов по цепям нейронов. В формировании памяти участвуют нейроны коры больших полушарий (височные доли), ретикулярная формация ствола мозга, гипоталамическая область. Различают зрительную, слуховую, осязательную, двигательную, или моторную, и смешанную память в зависимости от того, какой из анализаторов играет в этом процессе главную роль.
Анализаторы. Организм человека улавливает различные изменения, происходящие во внешней среде, с помощью органов чувств – осязания, зрения, слуха, вкуса и обоняния. В каждом из них имеются специфические рецепторы, воспринимающие определенный вид раздражения. В зависимости от способа взаимодействия рецептора с раздражителем различают контактные (рецепторы кожи, вкусовые) и дистантные (зрительные, слуховые, обонятельные) рецепторы. И.П. Павлов ввел понятие анализатора как функциональной системы, состоящей из трех компонентов: рецептора (периферической части), проводниковой части и центральной части, представленной соответствующей областью коры головного мозга. В рецепторе энергия внешнего раздражения трансформируется в нервные импульсы, а затем по чувствительным нервным путям импульсы поступают в соответствующую зону коры, где формируются специфические ощущения.
Железы внутренней секреции не имеют выводных протоков и выделяют свой секрет – гормоны – в кровь и лимфу. Это гипофиз, щитовидная, паращитовидные железы, надпочечники, эпифиз, вилочковая железа. Кроме желез внутренней секреции существуют железы внешней секреции (слюнные железы, печень, молочные, сальные, потовые и др.) и смешанной секреции (половые и поджелудочная железа). Гормоны – химические соединения, обладающие высокой биологической активностью и в малых дозах дающие значительный физиологический эффект – играют ведущую роль в гуморальной регуляции функций организма.
Гипоталамус (отдел промежуточного мозга) – высший центр регуляции эндокринных функций. Он объединяет нервные и эндокринные регуляторные механизмы в единую нейроэндокринную систему, оказывая влияние на эндокринные железы либо по нисходящим нервным путям, либо через гипофиз (гуморально).
Гипофиз (нижний придаток мозга; масса около 0,6 мг) выделяет гормоны: соматотропный (регулирует рост), гонадотропный (способствует росту половых клеток и образованию половых гормонов), тиреотропный (действует на щитовидную железу), адренокортикотропный (усиливает синтез гормонов коры надпочечников), вазопрессин (влияет на гладкую мускулатуру артериол и повышает артериальное давление; угнетает мочеобразование) и др.
Эпифиз расположен в полости черепа, над таламусом между холмами среднего мозга (масса около 0,2 мг). Выделяет гормон мелатонин, тормозящий действие гонадотропных гормонов. Секреция эпифиза изменяется в зависимости от освещенности: свет подавляет синтез мелатонина.
Щитовидная железа (масса 30–40 г) расположена на шее впереди гортани. В ней образуются гормоны, богатые иодом: тироксин, трииодтиронин др. Основной функцией этих гормонов является стимуляция окислительных процессов в клетках, регуляция водного, белкового, жирового, углеводного и минерального обменов, роста и развития организма. Оказывают действие на функции центральной нервной системы и высшую нервную деятельность.
Паращитовидные железы – парные образования (масса 0,2–0,5 г), тесно прилегающие к щитовидной железе и вырабатывают паратгормон, вызывающий повышение уровня Са2+ в плазме.
Надпочечники – парные железы, расположены на верхних полюсах почек (масса около 15г). Они вырабатывают глюкокортикоиды (влияют на обмен углеводов, белков, жиров и др.), минералокортикоиды (регулируют обмен натрия и калия, действую на почки) и половые гормоны (андрогены, эстрогены и прогестерон, обуславливающие развитие вторичных половых признаков), адреналин (повышает систолический объем, ускоряет частоту сердечных сокращений и др.) и норадреналин (замедляет частоту сердечных сокращений).
Вилочковая железа (тимус) наибольшую массу имеет у новорожденных. после наступления полового созревания ее развитие прекращается и железа постепенно атрофируется. В железе размножаются и дифференцируются клетки – предшественники Т-лимфоцитов (зрелые Т-лимфоциты ответственны за развитие иммунитета).
Поджелудочная железа выделяет пищеварительные ферменты в двенадцатиперстную кишку по выводному протоку, а гормоны непосредственно в кровь (глюкагон и инсулин, регулирующих уровень глюкозы в крови).
Половые железы – семенники у мужчин и яичники женщин. За счет внешнесекреторной функции образуются сперматозоиды и яйцеклетки. Эндокринная функция связана с выработкой мужских (фндрогены – тестостерон и андростерон) и женских (эстрагены – эстрадиол ипрогестерон) половых гормонов. В мужских половых железах помимо андрогенов вырабатывается небольшое количество женских половых гормонов, а в женских одновременно с эстрогенами образуется небольшое количество андрогенов. При нарушении функции яичников или семенников изменяется соотношение продукции этих гормонов.
Размножение и развитие. Половое размножение обеспечивает смену поколений человеческих популяций. При слиянии женской и мужской половой клеток образуется зигота, дающая начало новому организму. Она наследует признаки отца и матери. Половые клетки образуются в половых органах: яйцеклетки – в яичниках, сперматозоиды – в семенниках. Оплодотворение яйцеклетки сперматозоидом происходит в маточной трубе. Образовавшаяся диплоидная зигота начинает делиться. Зародыш затем попадает в матку и внедряется в ее слизистую оболочку. Оплодотворение возможно в течение 12 – 24 ч после овуляции (т.е. выхода яйцеклетки из фолликул яйчника в брюшную полость), пока яйцеклетка сохраняет свою жизнеспособность. Способность к оплодотворению сперматозоидов сохраняется 2–4 сут. Если оплодотворения не произошло, то яйцеклетка разрушается и отторгается слизистая оболочка матки (менстуация). Самая наибольшая вероятность оплодотворения яйцеклетки примерно с 11 по 19 день после первого дня ментсруального периода.
В развитии человека выделяют эмбриональный (пренатальный или внутриутробный) и постэмбриональный периоды.
Эмбриональное развитие человека (продолжается в среднем 280 сут.) делят на три периода: начальный (1-я неделя развития), зародышевый (2–8-я недели), плодный (с 9-й недели развития до рождения ребенка).
Постэмбриональный период включает детство, отрочество и зрелость (взрослое состояние). Каждый из этих этапов состоит из нескольких стадий, имеющих ряд характерных особенностей.
Детство включает три стадии: первое детство начинается с появления ребенка на свет и продолжается 3 года, это период развития функциональной независимости и речи; второе детство охватывает период с 3 до 6 лет и характеризуется развитием личности ребенка и когнитивных процессов; третье детство продолжается с 6 до 12 лет и соответствует школьному возрасту и включению ребенка в социальную группу. Начало полового созревания знаменует собой окончание детства и вступление ребенка в отрочество.
Отрочество подразделяется на два периода: пубертатный период соответствует половому созреванию и продолжается до 15 или 16 лет; ювенальный период (юность), продолжающийся с 16 до 18–20 лет.
Зрелость несколько произвольно разделяют на три стадии: стадия ранней зрелости охватывает период с 20 до 40 лет; зрелый возраст, продолжающийся с 40 до 60 лет; период зрелости начинается с 60–65 лет и чаще всего сопровождается отходом человека от активной жизни, после 75 возраст считается преклонным.
Средняя продолжительность жизни в развитых странах составляет 80 лет у женщин и 72 года у мужчин. По мнению некоторых ученых, продолжительность человеческой жизни (за редкими исключениями) не может превышать 110 лет.
Жизнь уходит также поэтапно – в обратном порядке по сравнению с тем, как она развивается. Можно выделить четыре стадии этого процесса: социальная смерть; психическая смерть; мозговая смерть; физиологическая смерть.
Эволюция ранних форм человека – Homo habilis, Homo erectus и более поздних форм – неандертальцев, кроманьонцев. Формирование человека под действием не только природных факторов, но и под все возрастающим влиянием социальных факторов. Социально детерминированный характер эволюции современного человека.
Эволюционная экология как теоретическая база для объяснения эволюции человека и его предков. Основные принципы экологии и их связь с теорией эволюции. Естественный отбор и факторы, ограничивающие отбор. Типы эволюционных изменений: филетические изменения и дивергенция. Отбор и адаптация. Адаптивная радиация. Адаптивные признаки организма как средства решения проблем, поставленных перед организмом окружающей средой. Принципиальное сходство эволюции человека и других видов живой природы: эволюция гоминид как процесс взаимодействия внутренних сил эволюции (филогенетического наследия) и внешних сил (окружающей среды); одновременное существование нескольких видов гоминид в определенные периоды эволюции; повторяемость эволюционных тенденций в разных ветвях гоминид.
Филогенетическое развитие человека. Геологическая хронология. Хронологические рамки эволюции человека. Реконструкция облика понгидного предка человека. Гоминоиды и гоминиды. Построение филогенетических схем эволюции гоминид по данным палеонтологии, сравнительной морфологии, кариологии, иммуногенетики, сравнительной биохимии, этологии.
Использование «молекулярных часов» для датировки эволюционных событий гоминид.
Действие основных факторов эволюции в современных человеческих популяциях и возможные пути эволюции человека в будущем: снижение значения многих факторов эволюции, таких как естественный отбор, изоляция, волны численности; продолжение действия, а в ряде районов даже усиление мутационного процесса.
Человек как биологический вид.
Изменчивость организма. Морфологическая уникальность человеческого организма. Биологическая изменчивость современного человека: индивидуальная, внутрипопуляционная, межпопуляционная изменчивость. Причины изменчивости: географические (экологические) условия, исторические факторы и др.
Основные закономерности роста человека.
Кривая роста человека, рост в пренатальном и постнатальном периодах, абсолютный рост, скорость роста. Пренатальный рост, общая характеристика пренатального роста, изменение скорости роста от оплодотворения до рождения. Факторы, влияющие на пренатальный рост, процессы морфогенеза в пренатальный период.
Постнатальный рост, изменение скорости роста в течение жизни. Половые различия в ростовых кривых. Критические периоды. Ростовые скачки – полуростовой скачок и пубертатный скачок роста. Постпубертатный рост. Кривая роста человека как характерная особенность приматов.
Пубертатный скачок роста и его проявление на различных органах и тканях; половые различия в проявлении пубертатного скачка. Развитие системы органов размножения у мальчиков и девочек в пубертатный период.
Биологический возраст. Определение возраста по степени развития и понятие физиологической зрелости или биологического возраста. Совпадение биологического и хронологического возраста у большинства детей.
Акселерация или эпохальный сдвиг.
Эпохальные сдвиги темпов развития: изменения соматического и физиологического развития детей и подростков за последние 100-150 лет.
Старение организма. Природа, механизмы и критерии старения. Первичное проявление старения - изменения генетического аппарата клетки. Морфологические критерии старения: особенности внешности, состояние скелета или костный возраст, состояние зубов или зубной возраст. Функциональные критерии старения - повышение уровня холестерина в крови и др. Видовая продолжительность жизни человека. Факторы, регулирующие темп старения – экологические условия, наследственные особенности организма и др.
Половой диморфизм человека. Генетические, морфологические, физиологические аспекты полового диморфизма человека.
Генетическое определение пола, процесс мейоза и половые X и Y хромосомы, аномальные отклонения в наборе половых X и Y хромосом. Численное соотношение полов в разном возрасте. Наследование, сцепленное с полом – Х-сцепленное наследование и Y-сцепленное наследование, примеры признаков, сцепленных с полом, болезни, связанные с полом: цветовая слепота, гемофилия и др. Наследование, ограниченное или регулируемое полом: преждевременное облысение, синдром Лоуренса-Муна-Билда и др.
Морфологические различия полов у человека: различие в ростовой кривой у женщин и мужчин, развитие первичных и вторичных половых признаков у мальчиков и девочек, половые различия в пропорциях тела, половая изменчивость конституционных типов. Половой диморфизм основных морфологических частей тела человека: скелета, покровов тела, внутренних органов, сердечно-сосудистой системы, желез внутренней секреции и др.
Половые различия в физиологии человека: деятельность гормонов, определяющих развитие половых признаков у человека – преобладание андрогенов у мужчин и эстрогенов у женщин. Деятельность половых гормонов и уровень обмена веществ: у мужчин уровень обмена веществ выше. Физиологические особенности полов в работе функциональных систем: половой, кровеносной, дыхательной и др.
6.1.3. Здоровье человека
По определению Всемирной организации здравоохранения (ВОЗ), здоровье человека – это состояние полного физического, душевного и социального благополучия. Здоровье – одно из основных прав человека. Не менее важным правом является право человека на информацию о тех факторах, которые определяют здоровье человека или являются факторами риска, то есть их воздействие может привести к развитию болезни.
Фактор риска – общее название факторов, не являющихся непосредственной причиной определенной болезни, но увеличивающих вероятность ее возникновения. К ним относятся условия и особенности образа жизни, а также врожденные или приобретенные свойства организма. Они повышают вероятность возникновения у индивидуума болезни и (или) способны неблагоприятно влиять на течение и прогноз имеющегося заболевания. Обычно выделяют биологические, экологические и социальные факторы риска. Если к факторам риска присовокупить факторы, являющиеся непосредственной причиной болезни, то вместе их называют факторами здоровья.
К биологическим факторам риска относятся генетические и приобретенные в онтогенезе особенности организма человека. Известно, что некоторые болезни чаще встречаются в определенных национальных и этнических группах. Существует наследственная предрасположенность к заболеванию гипертонической болезнью, язвенной болезнью, сахарным диабетом и другими болезнями. Для возникновения и течения многих болезней, в том числе сахарного диабета, ишемической болезни сердца, серьезным фактором риска является ожирение. Существование в организме очагов хронической инфекции (например, хронического тонзиллита) может способствовать заболеванию ревматизмом.
Экологические факторы риска. Изменения физических и химических свойств атмосферы влияют, например, на развитие бронхолегочных заболеваний. Резкие суточные колебания температуры, атмосферного давления, напряженности магнитных полей ухудшают течение сердечно-сосудистых заболеваний. Ионизирующее излучение является одним из онкогенных факторов. Особенности ионного состава почвы и воды, а, следовательно, и продуктов питания растительного и животного происхождения, приводят к развитию элементоза – заболеваний, связанных с избытком или недостатков в организме атомов того или иного элемента. Например, недостаток йода в питьевой воде и продуктах питания в районах с низким содержанием йода в почве может способствовать развитию эндемического зоба.
Социальные факторы риска. Неблагоприятные жилищные условия, многообразные стрессовые ситуации, такие особенности образа жизни человека, как гиподинамия – фактор риска развития многих заболеваний, особенно болезней, сердечно-сосудистой системы. Вредные привычки, например курение – фактор риска возникновения бронхолегочных и сердечно-сосудистых заболеваний. Употребление алкоголя – фактор риска развития алкоголизма, болезней печени, сердца и др.
Факторы риска могут быть существенны для отдельных индивидуумов (например, генетические особенности организма) или для множества особей разных видов (например, ионизирующее излучение). Наиболее неблагоприятно оценивается совокупное воздействие на организм нескольких факторов риска, например одновременное наличие таких факторов риска, как ожирение, гиподинамия, курение, нарушение углеводного обмена, значительно увеличивает риск развития ишемической болезни сердца.
В профилактике возникновения и прогрессирования болезни большое внимание уделяют устранению факторов риска индивидуального характера (отказ от вредных привычек, занятия физкультурой, ликвидация очагов инфекции в организме и др.), а также устранению факторов риска, имеющих значение для популяции. На это направлены, в частности, мероприятия по охране окружающей среды, источников водоснабжения, санитарная охрана почвы, санитарная охрана территории, устранение профвредностей, соблюдение техники безопасности и др.
Первобытный человек был практически не защищен от действия лимитирующих факторов среды. Продолжительность его жизни была небольшой, а плотность популяции весьма низкой. Главными из ограничивающих факторов были недоедание, гипердинамия и инфекционные болезни.
Чтобы выжить человек старался оградить себя от воздействия неблагоприятных факторов окружающей природной среды. Для этого он создал искусственную среду своего обитания. Но и здесь действуют свои факторы риска. Особенно остро они проявляются в городской среде. В современном обществе доминирующими стали такие факторы риска как гиподинамия, переедание, вредные привычки, стрессы, загрязнение окружающей среды.
В настоящее время негативное воздействие окружающей человека среды проявляется в развитии следующих процессов: нарушение биоритмов (в частности сна), аллергизация населения, рост онкологической заболеваемости, рост доли лиц с избыточным весом, рост доли рождения недоношенных детей, акселерация, «омоложение» многих форм патологии, абиологическая тенденция в организации жизни (курение, наркомания, алкоголизм и пр.), рост близорукости, возрастание удельного веса хронических заболеваний, развитие профессиональных заболеваний и т. д.
Группировка факторов риска и их значение для здоровья
Группы факторов риска
Факторы риска
Значение для здоровья, %
(для России)
Биологические факторы
Генетика, биология
человека Наследственная и приобретенная в ходе индивидуального развития предрасположенность к заболеваниям 15-20
Экологические факторы Состояние
окружающей среды
Загрязнение воздуха, воды, почвы, продуктов питания, резкая смена погодных явлений, повышенный уровень радиационного, магнитного и других излучений 20-25
Социальные факторы Условия и
образ жизни
Курение, употребление алкоголя, употребление наркотиков, неправильное питание, недостаток сна, стрессовые ситуации, гипо- и гипердинамия, вредные условия труда, плохие материально-бытовые условия, непрочность семьи, высокий уровень урбанизации 50-55
Медицинское обеспечение
Неэффективность профилактических мероприятий, низкое качество медицинской помощи, несвоевременность ее оказания 10-15
В последнее время стало понятно, что одна только медицина не может справиться с растущей патологией у населения. Доля влияния здравоохранения на здоровье человека составляет 10–15%, в то время как условия и образ жизни составляет более 50% этого влияния. В связи с этим возрос интерес к здоровому образу жизни, как среди специалистов, так и широких кругов населения. Происходит осознание тезиса: искусство продлить жизнь – это искусство не укорачивать ее. Становится ясно, что болезни современного человека обусловлены, прежде всего, его образом жизни и повседневным поведением. Здоровый образ жизни необходимо рассматривать как основу профилактики заболеваний.
При определении здорового образа жизни необходимо учитывать два фактора – генетическую природу данного человека и ее соответствие конкретным условиям жизнедеятельности. Здоровый образ жизни есть способ жизнедеятельности, соответствующий генетически обусловленным особенностям данного человека, конкретным условиям жизни и направленный на формирование, сохранение и укрепление здоровья, на полноценное выполнение человеком его социально-биологических функций. Обязательным является учет индивидуальности каждого человека. Здоровых образов жизни должно быть столько, сколько существует людей.
6.1.4. Эмоции. Творчество
Эмоции представляют собой реакции животных и человека на воздействие внешних и внутренних раздражителей, имеющие ярко выраженную субъективную окраску и охватывающие все виды чувствительности. Различают положительные эмоции – радость, наслаждение, удовольствие – и отрицательные – грусть, печаль, неудовольствие. Разные виды эмоций сопровождаются различными физиологическими изменениями в организме, соответствующими психическими проявлениями. Например, при печали, смущении, испуге понижается тонус скелетной мускулатуры. Печаль характеризуется спазмом сосудов, испуг – расслаблением гладкой мускулатуры. Гнев, радость, нетерпение сопровождаются повышением тонуса скелетной мускулатуры, при радости, кроме того, Расширяются сосуды, при гневе расстраивается координация Движений, увеличивается содержание сахара в крови и пр.
Эмоциональное возбуждение мобилизирует все имеющиеся у организма резервы. Более тонко работает интеллектуальная сфера, память. Возникает резкое возбуждение симпатической части вегетативной нервной системы, в кровь поступает значительное количество адреналина, усиливается работа сердца и повышается артериальное давление, растет газообмен, расширяются бронхи, Увеличивается интенсивность окислительных и энергетических процессов в организме. Резко изменяется характер деятельности скелетных мышц, т.е. они могут включиться в работу одновременно, а не поочередно. Блокируется процесс, тормозящий мышечную деятельность при утомлении.
В процессе эволюции эмоции сформировались как механизм приспособления. Огромную роль в жизни человека играют положительные эмоции. Они важны для сохранения здоровья в работоспособности человека.
Творчество – процесс создания чего-либо нового, часто предполагает, что человек может испытывать недостаточность информации, знаний, умений для достижения цели и решения той или иной проблемы, и именно поэтому ему необходимо создать новые знания, умения, новые объекты и произведения. Эмоции, вдохновение воображение помогают это сделать. Огромную роль эмоций в творческом процессе признавал и В.И. Вернадский. Он писал: «Говорят: одним разумом можно все постигнуть. Не верьте!.. Одна нить – разум, другая – чувство, и всегда они друг с другом соприкасаются в творчестве».
Творчество проявляется в поиске принципиально нового решения научной или технической проблемы, причем структура мыслительного процесса решения проблем сложна, но неизменно успеху, «озарению», нахождению нового решения способствует эмоциональная увлеченность проблемой, вера в успех, эмоциональная положительная стимуляция.
Выделяют четыре стадии решения проблемы: подготовка, созревание решения, вдохновение, проверка найденного решения.
Структура мыслительного процесса решения проблемы следующая:
1. Мотивация (желание решить проблему).
2. Анализ проблемы (выделение «что известно», «что требуется найти»).
3. Поиск решения на основе следующих операций:
- поиск решения на основе одного известного алгоритма (репродуктивное решение).
- поиск решения на основе выбора оптимального варианта из множества известных алгоритмов.
- решение на основе комбинации отдельных звеньев из различных алгоритмов.
- поиск принципиально нового решения (творческое мышление): на основе углубленных логических рассуждений (анализ, сравнение, синтез, классификация, умозаключение и т.п.), использования аналогий, эвристических приемов, эмпирического метода проб и ошибок.
В случае неудачи – переключение на другую деятельность («период инкубационного отдыха» – «созревание идей»), потом снова озарение, вдохновение, мгновенное осознание решения некоторой проблемы (интуитивное мышление).
Логическое обоснование найденной идеи решения, логическоедоказательство правильности решения.
Реализация решения.
Проверка найденного решения.
Коррекция (в случае необходимости возврат к этапу 2).
Мыслительная деятельность реализуется как на уровне сознании, так и на уровне бессознательного, характеризуется сложными переходами и взаимодействиями этих уровней. В результате успешного (целенаправленного) действия получается результат, соответствующий предварительно поставленной цели, и результат, который не был предусмотрен в сознательной цели; он является по отношению к ней побочным (побочный продукт действия). Проблема познанного и неосознанного конкретизировалась в проблему взаимоотношения прямого (осознаваемого) и побочного (неосознаваемого) продуктов действия. Побочный продукт действия также отражается субъектом, это отражение может участвовать в последующей регуляции действий.
Исследуя решение творческих задач, можно наблюдать следующую закономерность: вначале используются первичные, автоматизированные способы решения (что соответствует низшим уровням), причем первичные способы действия реализуются до тех пор, пока не становится ясно, что данным способом задачу не решить.
На следующем этапе происходит осмысление неудач (средний уровень), осознается причина этих неудач, и именно то, что средства не соответствуют задаче, формируется критическое отношение к собственным средствам и способам действия. В результате к условиям сдачи применяется более широкий круг средств, происходит выработка программ «поисковой доминанты», потом на низшем (неосознанном) уровне принимается интуитивное решение, «решение в принципе», а на последних этапах (высший уровень) происходит логическое обоснование и формализация решения.
Для активизации мышления можно применять специальные формы организации мыслительного процесса, например «мозговой штурм» – метод, предложенный А. Осборном (США). Он предназначен для продуцирования идей и решений при работе в группе. Основные правила проведения «мозгового штурма» следующие:
Группа состоит из нескольких человек, желательно различной профессиональной направленности (для уменьшения стереотипизации подходов), в группе имеется лишь несколько человек, сведущих в рассматриваемой проблеме.
«Запрет критики» – чужую идею нельзя прерывать, критиковать; можно лишь похвалить, развить чужую идею или предложить свою.
Участники должны быть в состоянии релаксации, т.е. состоянии психической и мышечной расслабленности, комфорта.
Все высказываемые идеи фиксируются (на магнитофоне, стенографических записях) без указания авторства.
Собранные в результате обсуждения идеи передаются группе экспертов-специалистов, занимающихся данной проблемой, для отбора наиболее ценных идей. Как правило, таких идей оказывает примерно 10%. Участников в состав «жюри-экспертов» не включают.
Практика показала, что эффективность таких «мозговых штурмов» очень высока. «Мозговой штурм», который ведет группа, постепенно накапливающая опыт решения различных задач, положен в основу так называемой синектики, предложенной американским ученым У. Гордоном. При «синектическом штурме» предусмотрено обязательное выполнение четырех специальных приемов, основанных на аналогии: прямой («подумайте, как решаются задачи, похожие на данную»); личной («попробуйте войти в образ данного в задаче объекта и рассуждать его точки зрения»); символической («дайте в двух словах образ» определение сути задачи»); фантастической («представьте, как бы эту задачу решали сказочные волшебники»).
Все рассмотренные методы активизации творческих мыслительных возможностей предусматривают целенаправленную стимуляцию ассоциативных образов (воображения).
Научное творчество и особенно творчество в искусстве опирается и на воображение, которое в свою очередь неразрывно связано с эмоциями и чувствами человека. Воображение – психический процесс, заключающийся в создании новых образов (представлений) Путем переработки материала восприятий и представлений, полученных в предшествующем опыте.
Воображение как своеобразная форма отражения действительности осуществляет мыслительный отход за пределы непосредственно воспринимаемого, способствует предвосхищению будущего, «оживляет» то, что было ранее.
Воображение может быть пассивным (сновидения, грезы) и активным, которое в свою очередь разделяют на воссоздающее (создание образа предмета по его описанию) и творческое (создание новых образов, требующих отбора материалов